Publications mathématiques de Besançon Algèbre et théorie des nombres

Rina Paucar and Claudia Schoemann
On the Kernel of the Gysin Homomorphism on Chow Groups of Zero Cycles 2024, p. 59-104.
https://doi.org/10.5802/pmb. 56

MERSENNE

ON THE KERNEL OF THE GYSIN HOMOMORPHISM ON CHOW GROUPS OF ZERO CYCLES

by

Rina Paucar and Claudia Schoemann

Abstract

Given a smooth projective connected surface over \mathbb{C} embedded into a projective space \mathbb{P}^{d} and a smooth projective curve C embedded into the surface we study the kernel of the Gysin homomorphism between the Chow groups of 0-cycles of degree zero of the curve and the surface induced by the closed embedding. Following the approach of Bannerjee and Guletskii we prove that the kernel of the Gysin homomorphism is a countable union of translates of an abelian subvariety A inside the Jacobian J of the curve C. We also prove that there is a c-open subset U_{0} contained in the set $U \subset\left(\mathbb{P}^{d}\right)^{*}$ parametrizing the smooth projective curves such that $A=0$ or $A=B$ for all curves parametrized by U_{0}, where B is the abelian subvariety of J corresponding to the vanishing cohomology $H^{1}(C, \mathbb{Q})_{\text {van }}$ of C. We give a background of algebraic cycles, Chow groups, Hodge structures, the Abel-Jacobi map, Lefschetz pencils and the irreducibility of the monodromy representation.

Résumé. - Étant donné une surface lisse projective connexe sur \mathbb{C} plongée dans un espace projectif \mathbb{P}^{d} et C une courbe lisse projective plongée dans la surface, on étudie le noyau de l'homomorphisme de Gysin entre les groupes de Chow des 0-cycles de degré zéro de la courbe et de la surface induit par l'injection fermée. Suivant l'approche de Bannerjee and Guletskii, on démontre que le noyau de l'homomorphisme de Gysin est une union dénombrable de translatées d'une sous-variété abélienne A dans la Jacobienne J de la courbe C. On démontre également qu'il existe un sous-ensemble c-ouvert U_{0} de l'ensemble $U \subset\left(\mathbb{P}^{d}\right)^{*}$ paramétrisant les courbes lisses projectives tel que $A=0$ ou $A=B$ pour toute courbe paramétrisée par U_{0}, où B est la sous-variété abélienne de J correspondant à la cohomologie évanescente $H^{1}(C, \mathbb{Q})_{\text {van }}$ de C.
On donne une introduction aux cycles algébriques, aux groupes de Chow, aux structures de Hodge, à l'application d'Abel-Jacobi, aux pinceaux de Lefschetz et à l'irréductibilité de la représentation de monodromie.

1. Introduction

Let k be an algebraically closed field of characteristic 0 , let S be a smooth projective surface over k, let $\mathrm{CH}_{0}(S)_{\operatorname{deg}=0}$ be the Chow group 0-cycles of degree zero, let alb ${ }_{S}$ be the Albanese morphism defined from $\mathrm{CH}_{0}(S)_{\text {deg=0 }}$ to the Albanese variety $\mathrm{Alb}(S)$ of S. Bloch's conjecture states that if S has geometric genus zero, then $a l b_{S}$ is an isomorphism, see [2] and [4].

Key words and phrases. - 0-cycles; rational, algebraic and homological equivalence; Chow groups; Hodge theory; Lefschetz pencils; the monodromy argument, Gysin homomorphism.

If the Kodaira dimension of S is <2, i.e., S is of special type, Bloch's conjecture has been proven in [5]. If S has Kodaira dimension 2, i.e., S is of general type, the vanishing of the geometric genus of S implies the vanishing of the irregularity of S, and the conjecture simply states that any two points on S are rationally equivalent to each other. This is the hard case of Bloch's conjecture and only known for some particular cases.
In [1] Banerjee and Guletskii show a general version on the countability results of the Gysin kernel related to the countability results of the Gysin kernel for surfaces stated in [23, p. 304305 , Exercise $1 \mathrm{a}, \mathrm{b}]$. They provide a formal and abstract proof based on the étale monodromy argument. Let us comment their approach. Let X be a smooth projective connected variety of dimension $2 p$ embedded into \mathbb{P}^{m} over an uncountable algebraically closed field k of characteristic 0 , let Y be a hyperplane section of X, and let $\mathrm{A}^{p}(Y)=\frac{\mathrm{Z}^{p}(Y)_{\text {alg }}}{\mathrm{Z}^{p}(Y)_{\text {rat }}}\left(\right.$ resp. $\left.\mathrm{A}^{p+1}(X)=\frac{\mathrm{Z}^{p+1}(X)_{\mathrm{alg}}}{\mathrm{Z}^{p+1}(X)_{\text {rat }}}\right)$ be the continuous part of the Chow group $\mathrm{CH}^{p}(Y)$ (resp. $\mathrm{CH}^{p+1}(X)$), that is, algebraically trivial algebraic cycles modulo rational equivalence on Y (resp. on X). Whenever Y is smooth and satisfying three assumptions (the group $\mathrm{A}^{p}(Y)$ is regularly parametrized by an abelian variety $A, \mathrm{~A}^{p}(Y)=\mathrm{CH}^{p}(Y)_{\operatorname{deg}=0}$ and $H_{e t}^{1}\left(A, \mathbb{Q}_{l}(1-p)\right) \cong H_{e t}^{2 p-1}\left(Y, \mathbb{Q}_{l}\right)$, see $\S 2$ in [1]) they prove that the kernel of the Gysin pushforward homomorphism from $\mathrm{A}^{p}(Y)$ to $\mathrm{A}^{p+1}(X)$ induced by the closed embedding of Y into X is the union of a countable collection of shifts of a certain abelian subvariety A_{0} inside A, and for a very general section Y either $A_{0}=0$ or A_{0} coincides with an abelian subvariety A_{1} in A. Due to their assumptions the case $p=1$ of this result gives an approach to prove Bloch conjecture.
In this paper we study the Gysin kernel for the case of surfaces and we prove some results on the countability of the Gysin kernel related to the countability results of the Gysin kernel stated in [23, p. 304-305, Exercise 1a,b] and [1] which play an important role in the study of 0 -cycles on surfaces, especially in the context of Bloch's conjecture. More precisely, let S be a connected smooth projective surface over \mathbb{C}. Let Σ be the complete linear system of a very ample divisor D on S and let $d=\operatorname{dim}(\Sigma)$. For any closed point $t \in \Sigma \cong \mathbb{P}^{d *}$, let H_{t} be the corresponding hyperplane in $\mathbb{P}^{d}, C_{t}=H_{t} \cap S$ the corresponding hyperplane section of S, and r_{t} the closed embedding of C_{t} into S. Let $U=\Sigma \backslash \Delta_{S}$ be the open subset of Σ parametrizing smooth hyperplane sections of S. Using properties of the Chow groups of 0 -cycles of degree zero of the smooth hyperplane sections C_{t} of a surface S we prove that whenever C_{t} is a smooth hyperplane section, the Gysin kernel G_{t}, i.e., the kernel of the Gysin homomorphism $r_{t *}$ from $\mathrm{CH}_{0}\left(C_{t}\right)_{\operatorname{deg}=0}$ to $\mathrm{CH}_{0}(S)_{\operatorname{deg}=0}$ induced by r_{t}, is the union of a countable collection of translates of an abelian subvariety A_{t} inside $B_{t} \subset J_{t}$, where A_{t} is the unique irreducible component passing through zero of the irredundant decomposition of G_{t}, and B_{t} is the abelian subvariety of the Jacobian J_{t} of the curve C_{t} corresponding to the Hodge substructure on $H^{1}\left(C_{t}, \mathbb{Z}\right)_{\text {van }}$. This result is the case $p=1$ of [1, Theorem A$]$ and it is also item a) of [23, p. 304, Exercise 1]. Then using the approach to prove Theorem B in [1], we present the proof that there is a c-open U_{0} in U such that $A_{t}=0$ for all $t \in U_{0}$ or $A_{t}=B_{t}$ for all $t \in U_{0}$, that is, we prove that for all $t \in U_{0}$ we have that A_{t} has only two possibilities and the same behaviour. We achieve this result because the fact that the curves C_{t} live in the c-open subset U_{0} assures that they have a uniform behavior (i.e. that the fibers C_{t} with $t \in U_{0}$ are isomorphic to the geometric generic fiber of the family $f: \mathscr{C} \rightarrow \mathbb{P}^{d *}$ of hyperplane sections of S parametrized by $\Sigma=\mathbb{P}^{d *}$) and hence the subvarieties A_{t} with t in U_{0} have also a uniform behaviour. This result is the case $p=1$ of $[1$, Theorem B] and in order to explain the relation of this result with item b) of [23, p. 304, Exercise 1] we should say that Voisin
in her book [23] uses the word general for properties holding in a c-open instead of using the word very general (see for example [23, §10]) which is more commonly used by convention. It is important to note that in order to prove the countability results on the Gysin kernel for the case of smooth projective connected variety of dimension $2 p$ in [1] Banerjee and Guletskii make three assumptions called Assumption 1, Assumption 2, and Assumption 3. In this paper we also prove that these assumptions are not necessary for the case of surfaces because they turn out to be true facts which we prove and call Fact 1, Fact 2 and Fact 3 respectively.
The plan of the paper is as follows. In Section 2 we give theoretical background about algebraic cycles, Chow groups, the notions of rational, algebraic and homological equivalence and their relations. In Section 3 we give the needed background about Hodge structures and the AbelJacobi map. In Section 4 we study Lefschetz pencils and the Monodromy representation. In Section 5 we state and prove the main result of the paper.

Notation

Unless otherwise stated, for a scheme we will mean an algebraic scheme over a field k (i.e. a scheme of finite type over k) which is separated; a variety will be an integral scheme; a subvariety of a scheme will be a closed subscheme that is a variety, a point on a scheme will be a closed point.

2. Algebraic Cycles

The purpose of this section is to recall some needed facts about intersection theory. We start with the definition of algebraic cycles, then we define rational equivalence which allows us to study some properties of the Chow groups $\mathrm{CH}_{r}(X)$ of r-cycles on a scheme X and in particular of $\mathrm{CH}_{0}(X)_{\mathrm{deg}=0}$, the Chow group of 0 -cycles of degree zero, which is the main mathematical object of this paper, next we study the notion of algebraic equivalence which allows us to define the continuous part $\mathrm{A}_{r}(X)$ of the Chow group, i.e., the group of r-cycles algebraically equivalent to zero modulo the group of r-cycles rationally equivalent to zero. After that we study the notion of homological equivalence which allows us to define the group $\mathrm{CH}_{r}(X)_{\text {hom }}$ of r-cycles homologically equivalent to zero modulo the group of r-cycles rationally equivalent to zero. We then study the relation between rational, algebraic and homological equivalence which allows to conclude that when X is a connected smooth projective variety over an algebraically closed field of characteristic zero $\mathrm{CH}_{0}(X)_{\operatorname{deg}=0}, \mathrm{~A}_{0}(X)$ and $\mathrm{CH}_{0}(X)_{\text {hom }}$ are isomorphic to each other which implies Fact 1 (see Lemma 2.49), therefore we gain a lot of information to study $\mathrm{CH}_{0}(X)_{\operatorname{deg}=0}$ via these isomorphisms. The main reference for this section is [7], alternatively see $[18,3,6]$.

Definition 2.1 (r-Cycle). - Let X be a scheme over k. An algebraic cycle of dimension r on X or simply an r-cycle on X is a formal finite linear combination $Z=\sum n_{i} Z_{i}$, where $n_{i} \in \mathbb{Z}$, and Z_{i} are subvarieties of dimension r on X.

The set $Z_{r}(X)$ of r-cycles on X is a free abelian group called the group of r-cycles on X.
Definition 2.2 (Purely dimensional Scheme). - Let X_{1}, \ldots, X_{t} be the irreducible components of the scheme X. We say that X is purely n-dimensional if $\operatorname{dim}\left(X_{i}\right)=n$, for all i.

Remarks. -

1. If X is a purely n-dimensional scheme we have: $\mathrm{Z}_{r}(X)=\mathrm{Z}^{n-r}(X)$, where $\mathrm{Z}^{n-r}(X)$ is the group of algebraic cycles of codimension $n-r$ on X (see [18, §1.1.]).
2. If we want to work with linear combinations in a field F, we write $Z_{r}(X)_{F}=Z_{r}(X) \otimes_{\mathbb{Z}} F$ (see [18, §1.1.]).

Example 2.3. - Let X be a variety of dimension n.

1. 0-cycles on X are finite formal linear combination $Z=\sum n_{i} P_{i}$, where $n_{i} \in \mathbb{Z}$ and P_{i} are points of X.
2. Cycles of codimension 1 or $(n-1)$-Cycles or divisors on X are finite formal linear combination $Z=\sum n_{i} Z_{i}$, where $n_{i} \in \mathbb{Z}$ and Z_{i} are subvarieties of codimension 1 of X.
2.1. Rational equivalence. - Let X be a scheme.

Definition 2.4 (r-cycle associated to a rational function). - Let W be any subvariety of X of dimension $r+1$, and let $f \in k(W)^{*}$ be a nonzero rational function on W, then we can define a r-cycle associated to f on X as $\operatorname{div}(f)=\sum_{V} \operatorname{ord}_{V}(f) V$, where V runs over all subvarieties of codimension 1 on W, and $\operatorname{ord}_{V}(f)$ is the order of vanishing of f along V, see [7, §1.2].
The above definition holds for every subvariety W of codimension $r+1$ of X, see [7, §1.3] or [18, §1.2.].

Definition 2.5 (r-cycle rationally equivalent to 0). - A r-cycle Z on X is rationally equivalent to zero, denoted by $Z \sim_{\text {rat }} 0$, if there is a finite number of $(r+1)$-dimensional subvarieties W_{i} of X and $f_{i} \in k\left(W_{i}\right)^{*}$ such that $Z=\sum \operatorname{div}\left(f_{i}\right)$.
The set $Z_{r}(X)_{\text {rat }}=\left\{Z \in Z_{r}(X): Z \sim_{\text {rat }} 0\right\}$ of r-cycles rationally equivalent to 0 is a subgroup of $Z_{r}(X)$.
Definition 2.6 (Rationally equivalent cycles). - Two r-cycles Z_{1} and Z_{2} on X are rationally equivalent, denoted by $Z_{1} \sim_{\text {rat }} Z_{2}$, if its difference $Z_{1}-Z_{2}$ is rationally equivalent to 0 .

Informally we say that two r-cycles Z and Z^{\prime} on X are rationally equivalent if there exists a family of r-cycles on X parametrized by \mathbb{P}^{1} interpolating between them. More precisely, if we restrict to smooth projective varieties we have the following alternative definition of rational equivalence, see for example [18, Lemma 1.2.5], [6, §1.2.2], [3, Introduction], and [10, Introduction].

Definition 2.7 (Rationally equivalent cycles). - Let X be a smooth projective variety. Two r-cycles Z and Z^{\prime} on X are rationally equivalent if there exits $W \in Z_{r+1}\left(X \times \mathbb{P}^{1}\right)$ such that for any $t \in \mathbb{P}^{1}$ defining by

$$
W(t):=\left(\operatorname{pr}_{X}\right)_{*}(W \cdot(X \times\{t\}))
$$

we have: $Z=W\left(t_{1}\right)$ and $Z^{\prime}=W\left(t_{2}\right)$ for some $t_{1}, t_{2} \in \mathbb{P}^{1}$. Here \cdot is the intersection product, pr_{X} is the projection to X and $\left(\mathrm{pr}_{X}\right)_{*}$ is the pushforward homomorphism induced by pr_{X}, see [7, §1.4].
Publications mathématiques de Besançon - 2024

In terms of codimension the definition is as follows
Definition 2.8 (Rationally equivalent cycles). - Let X be a smooth projective variety. Two cycles Z and Z^{\prime} of codimension i on X are rationally equivalent if there exits $W \in$ $\mathbf{Z}^{i}\left(X \times \mathbb{P}^{1}\right)$ such that for any $t \in \mathbb{P}^{1}$ defining by $W(t):=\left(\operatorname{pr}_{X}\right)_{*}(W \cdot(X \times\{t\}))$, we have: $Z=W\left(t_{1}\right)$ and $Z^{\prime}=W\left(t_{2}\right)$ for some $t_{1}, t_{2} \in \mathbb{P}^{1}$.

2.2. Chow Groups. - Let X be a scheme.

Definition 2.9 (Chow groups). - The group quotient $\mathrm{CH}_{r}(X)=\frac{\mathrm{Z}_{r}(X)}{\mathrm{Z}_{r}(X)_{\text {rat }}}$ of rational equivalence classes of r-cycles is called the Chow group of r-cycles.

Theorem 2.10 (Rational equivalence pushes forward). - If $f: X \rightarrow Y$ is a proper morphism and Z is a r-cycle on X rationally equivalent to zero, then $f_{*}(Z)$ is a r-cycle rationally equivalent to zero on Y.

Proof. - See [7, Theorem 1.4].
By Theorem 2.10 given a proper morphism $f: X \rightarrow Y$ there is an induced homomorphism on Chow groups $f_{*}: \mathrm{CH}_{r}(X) \rightarrow \mathrm{CH}_{r}(Y)$.

Definition 2.11. - The morphism f_{*} is called the pushforward homomorphism or Gysin homomorphism on Chow groups induced by f.

So, we see that the Chow groups have 'homological-like' properties.
Lemma 2.12. - Let $f: X \rightarrow Y$ be flat morphism of relative dimension n and Z an a r-cycle on Y which is rationally equivalent to zero. Then $f^{*}(Z)$ is rationally equivalent to zero in $\mathrm{Z}_{r+n}(X)$.

Proof. - See [7, Theorem 1.7].
By Lemma 2.12 there is an induced homomorphism on Chow groups

$$
f^{*}: \mathrm{CH}_{r}(Y) \longrightarrow \mathrm{CH}_{r+n}(X)
$$

Definition 2.13. - The morphism f^{*} is called pullback homomorphism on Chow groups induced by f.

So, we see that the Chow groups have also 'cohomological-like' properties.
The group $\mathrm{CH}_{0}(X)_{\operatorname{deg}=0}$. - Let X be a complete scheme over a field k, that is, X is proper over $\operatorname{Spec}(k)$.

Definition 2.14 (Degree of a 0-cycle). - The degree of 0 -cycles on X is a homomorphism deg : $\mathrm{Z}_{0}(X) \rightarrow \mathbb{Z}$, defined by $Z=\sum n_{i} P_{i} \mapsto \operatorname{deg}(Z)=\sum n_{i}\left[k\left(P_{i}\right): k\right]$, where $k\left(P_{i}\right)$ denotes the residue field of the point P_{i}.

Claim. - $\operatorname{deg}=f_{*}$, where $f: X \rightarrow \operatorname{Spec}(k)$ is the structural morphism and f_{*} is the pushforward homomorphism on cycles induced by f (see [7, §1.4]).

Proof. - Since X is complete, the structure morphism $f: X \rightarrow \operatorname{Spec}(k)$ is proper, so there is an induced pushforward homomorphism $f_{*}: \mathrm{Z}_{0}(X) \rightarrow \mathrm{Z}_{0}(\operatorname{Spec}(k))$ defined by $f_{*}(Z)=$ $\sum n_{i} f_{*}\left(P_{i}\right)=\sum n_{i} \operatorname{deg}\left(P_{i} / f\left(P_{i}\right)\right) f\left(P_{i}\right)$
Since $\operatorname{dim}\left(P_{i}\right)=\operatorname{dim}\left(f\left(P_{i}\right)\right)=\operatorname{dim}(\operatorname{Spec}(k))$, we have $\operatorname{deg}\left(P_{i} / f\left(P_{i}\right)\right)=\left[k\left(P_{i}\right): k(\operatorname{Spec}(k))\right]=$ $\left[k\left(P_{i}\right): k\right]$, then $f_{*}(Z)=\sum n_{i}\left[k\left(P_{i}\right): k\right] \operatorname{Spec}(k)$. Sending $\operatorname{Spec}(k) \rightarrow 1$, we get deg $=f_{*}$.

By Theorem 2.10 we have an induced homomorphism, denoted also by deg, on Chow groups: deg : $\mathrm{CH}_{0}(X) \rightarrow \mathrm{CH}_{0}(\operatorname{Spec}(k))$. Since $Z_{0}(\operatorname{Spec}(k))=\mathrm{CH}_{0}(\operatorname{Spec}(k))=\mathbb{Z}$ we get deg : $\mathrm{CH}_{0}(X) \rightarrow \mathbb{Z}$ the degree homomorphism on the Chow group of 0-cycles.

Definition 2.15 (The group $\mathrm{CH}_{0}(X)_{\operatorname{deg}=0}$). - The kernel of $\operatorname{deg}: \mathrm{CH}_{0}(X) \rightarrow \mathbb{Z}$ is denoted by

$$
\mathrm{CH}_{0}(X)_{\operatorname{deg}=0}=\operatorname{Ker}\left(\operatorname{deg}: \mathrm{CH}_{0}(X) \longrightarrow \mathbb{Z}\right)
$$

This is the Chow group of 0 -cycles of degree zero on X.
In particular, it follows that rationally equivalent cycles have the same degree.
Countability lemmas. - Let k be an uncountable field. In this subsection a variety is a reduced scheme, not necessarily irreducible.

Lemma 2.16. - Let X be an irreducible quasi-projective algebraic variety over k. Then X can not be written as a countable union of its Zariski closed subsets, each of which is not the whole X.

Proof. - See [1, Lemma 10].
Definition 2.17 (Irredundant countable union). - A countable union $V=\cup_{n \in \mathbb{N}} V_{n}$ of algebraic varieties will be called irredundant if V_{n} is irreducible for each n and $V_{m} \not \subset V_{n}$ for $m \neq n$. If V is a irredundant decomposition, then the sets V_{n} are called c-components of V.

Lemma 2.18. - Let V be a countable union of algebraic subvarieties of a given variety over an uncountable algebraically closed ground field. Then V admits an irredundant decomposition, and such an irredundant decomposition is unique.

Proof. - See [1, Lemma 11].
Lemma 2.19. - Let A be an abelian variety over k, and let K be a subgroup which can be represented as a countable union of Zariski closed subsets in A. Then the irredundant decomposition of K contains a unique irreducible component passing through 0 , and this component is an Abelian subvariety in A.

Proof. - See [1, Lemma 12].
Regular maps into $\mathrm{CH}_{0}(X)$. - Let X be a nonsingular projective variety over an uncountable algebraically closed field of characteristic zero.

Definition 2.20 (c-closed, c-open). - A subset of an integral algebraic scheme T which is union of a countable number of closed subsets is called a c-closed subset and the complement of a c-closed, i.e., intersections of a countable number of open subsets is called a c-open subset. Publications mathématiques de Besançon - 2024

Here we work over an uncountable field because in this case the theorem on unique decomposition into irreducible components extends to c-closed subsets, so we can speak about the dimension of a c-closed subset, understanding by this the maximum of the dimensions of its irreducible components.

Definition 2.21 (Symmetric product). - The d-th symmetric product of a variety X, denoted by $\operatorname{Sym}^{d}(X)$, is the quotient variety $\operatorname{Sym}^{d}(X)=X^{d} / \Sigma_{d}$, where X^{d} is the self-product of X and Σ_{d} is the group of permutations of the factors.

The d-th symmetric product $\operatorname{Sym}^{d}(X)$ is a variety of dimension $n d$, where $n=\operatorname{dim}(X)$ and as a set coincides with the set of effective 0 -cycles of degree d, i.e.,

$$
\operatorname{Sym}^{d}(X) \underset{\text { as set }}{=}\{\text { effective } 0 \text {-cycles of degree } d \text { on } X\}
$$

Definition 2.22 (Difference map). - The set-theoretic map

$$
\begin{aligned}
\theta_{d_{1}, d_{2}}^{X}: \operatorname{Sym}^{d_{1}}(X) \times \operatorname{Sym}^{d_{2}}(X) & \longrightarrow \mathrm{CH}_{0}(X) \\
(A, B) & \longmapsto[A-B]
\end{aligned}
$$

where $[A-B]$ is the class of the cycle $A-B$ modulo rational equivalence, will be called the difference map.

Remark 2.23. - When $d_{1}=d_{2}=d$ we will denote $\theta_{d_{1}, d_{2}}^{X}$ just by θ_{d}^{X}.
For any non negative integers d_{1}, \ldots, d_{s} we denote by

$$
\operatorname{Sym}^{d_{1}, \ldots, d_{s}}(X)=\operatorname{Sym}^{d_{1}}(X) \times \cdots \times \operatorname{Sym}^{d_{s}}(X)
$$

to the fibred product over the ground field k.
Let

$$
\begin{aligned}
W^{d_{1}, d_{2}} & =\left\{(A, B ; C, D) \in \operatorname{Sym}^{d_{1}, d_{2}}(X) \times \operatorname{Sym}^{d_{1}, d_{2}}(X): \theta_{d_{1}, d_{2}}^{X}(A, B)=\theta_{d_{1}, d_{2}}^{X}(C, D)\right\} \\
& =\left\{(A, B ; C, D) \in \operatorname{Sym}^{d_{1}, d_{2}}(X) \times \operatorname{Sym}^{d_{1}, d_{2}}(X):(A-B) \sim_{\text {rat }}(C-D)\right\}
\end{aligned}
$$

be the subset of $\operatorname{Sym}^{d_{1}, d_{2}}(X) \times \operatorname{Sym}^{d_{1}, d_{2}}(X)$ defining the rational equivalence on $\operatorname{Sym}^{d_{1}, d_{2}}(X)$. It is a c-closed subset by Lemma 1 in [20].

Remark 2.24. - Note that $W^{d_{1}, d_{2}}$ is the fibred product $\operatorname{Sym}^{d_{1}, d_{2}}(X) \times{ }_{\mathrm{CH}_{0}(X)} \operatorname{Sym}^{d_{1}, d_{2}}(X)$.
Definition 2.25 (Regular map into $\mathrm{CH}_{0}(X)$). - A set-theoretic map $\kappa: Z \rightarrow \mathrm{CH}_{0}(X)$ of an algebraic variety Z into the Chow group of 0 -cycles $\mathrm{CH}_{0}(X)$ will be called regular if there exists a commutative diagram (in the set-theoretic sense)

where f is a regular map and g is an epimorphism which is also a regular map.
Equivalently set-theoretic regular maps into $\mathrm{CH}_{0}(X)$ can be defined as follows ([20, Lemma 4]).

Definition 2.26 (Alternative definition of a regular map into $\mathrm{CH}_{0}(X)$). - The set-theoretic map $\kappa: Z \rightarrow \mathrm{CH}_{0}(X)$ is regular if and only if for any integers d_{1} and d_{2} the subset

$$
W_{\kappa, \theta_{d_{1}, d_{2}}^{X}}=\left\{(z, A, B) \in Z \times \operatorname{Sym}^{d_{1}, d_{2}}(X): \kappa(z)=\theta_{d_{1}, d_{2}}^{X}(A, B)\right\}=Z \times{ }_{\mathrm{CH}_{0}(X)} \operatorname{Sym}^{n, m}(X)
$$

is c -closed.
Lemma 2.27. - The map $\theta_{d_{1}, d_{2}}^{X}: \operatorname{Sym}^{d_{1}, d_{2}}(X) \rightarrow \mathrm{CH}_{0}(X)$ is regular.
Proof. - It follows from the above alternative definition of a regular map into $\mathrm{CH}_{0}(X)$ and the fact that the subset $W^{d_{1}, d_{2}}=\operatorname{Sym}^{d_{1}, d_{2}}(X) \times{ }_{\mathrm{CH}_{0}(X)} \operatorname{Sym}^{d_{1}, d_{2}}(X)$ is c-closed ([20, Lemma 1]).

Remark 2.28. - Recall that $\mathrm{CH}_{0}(X)=\mathbb{Z} \times \mathrm{CH}_{0}(X)_{\operatorname{deg}=0}$, where $\mathrm{CH}_{0}(X)_{\operatorname{deg}=0}$ is the Chow group of 0 -cycles of degree zero, see [20, Introduction].

Lemma 2.29. - Let $\kappa: Z \rightarrow \mathrm{CH}_{0}(X)_{\operatorname{deg}=0}$ be a regular map and let

$$
a l b_{X}: \mathrm{CH}_{0}(X)_{\operatorname{deg}=0} \longrightarrow \operatorname{Alb}(X)
$$

be the Albanese map. Then the composite map $\operatorname{alb}_{X} \circ \kappa: Z \rightarrow \operatorname{Alb}(X)$ is a regular map of algebraic varieties.

Proof. - see [20, Lemma 8].
Representability of $\mathrm{CH}_{0}(X)_{\operatorname{deg}=0}$. - Let X be a connected smooth projective variety over \mathbb{C} of dimension n.

Definition 2.30 (Representability). - $\mathrm{CH}_{0}(X)_{\operatorname{deg}=0}$ is representable if the natural map $\theta_{d}^{X}: \operatorname{Sym}^{d}(X) \times \operatorname{Sym}^{d}(X) \rightarrow \mathrm{CH}_{0}(X)_{\text {deg=0 }}$ is surjective for sufficiently large d (see [23, Definition 10.6]).
Equivalently the representability of $\mathrm{CH}_{0}(X)_{\operatorname{deg}=0}$ can be defined as follows ([23, Thm. 10.11]).
Definition 2.31 (Representability). - The group $\mathrm{CH}_{0}(X)_{\operatorname{deg}=0}$ is representable if and only if $a l b_{X}: \mathrm{CH}_{0}(X)_{\operatorname{deg}=0} \rightarrow \operatorname{Alb}(X)$ is an isomorphism.

The following Lemma is a basic property of rational equivalence ([23, Lemma 10.7], [16, Lemma 3]).

Lemma 2.32. - The fibres of the map $\theta_{d}^{X}: \operatorname{Sym}^{d}(X) \times \operatorname{Sym}^{d}(X) \rightarrow \mathrm{CH}_{0}(X)_{\operatorname{deg}=0}$ are countable unions of closed algebraic subsets of $\operatorname{Sym}^{d}(X) \times \operatorname{Sym}^{d}(X)$.

2.3. Algebraic Equivalence. -

Definition 2.33 (Algebraic equivalence). - Let X be a smooth projective reduced scheme. A cycle Z of codimension r on X is algebraically equivalent to 0 , denoted by $Z \sim_{\text {alg }} 0$, if and only if there exits a smooth connected curve C, a cycle $W \in \mathrm{Z}^{r}(X \times C)$ such that for any $t \in C$ defining by

$$
W(t):=\left(\operatorname{pr}_{X}\right)_{*}(W \cdot(X \times\{t\}))
$$

we have: $W\left(t_{1}\right)=Z$ and $W\left(t_{2}\right)=0$ for some $t_{1}, t_{2} \in C$.
Publications mathématiques de Besançon - 2024

The set of cycles of codimension r that are algebraically equivalent to 0 is denoted by $Z^{r}(X)_{\text {alg }}=\left\{Z \in Z^{r}(X): Z \sim_{\text {alg }} 0\right\}$. It is a subgroup of $\mathbf{Z}^{r}(X)$.
If X is a complex smooth projective variety equivalently we can define algebraic equivalence as follows, see [23, §8.2.1], [4, Introduction].

Definition 2.34 (Cycle associated to an intersection). - Let C be a smooth connected curve and $W \subset C \times X$ a closed algebraic subset of codimension r of X each of whose components dominates C (i.e. the restriction to the components of the projection over C is dominant). Then, for each point $t \in C$ we can consider: $W(t)=[W \cap(\{t\} \times X)]$, the cycle of codimension r on X associated to the schematic intersection of W with the fiber $\{t\} \times X \simeq X$ over t via the first projection.

Remark 2.35. - Note that if we denote by $\tau=\left.\mathrm{pr}_{X}\right|_{W}: W \rightarrow X$ and by $\pi=\left.\mathrm{pr}_{C}\right|_{W}:$ $W \rightarrow C$, where pr_{X} and pr_{C} are the projections to X and C respectively, we can define $W(t)$ as follows: $W(t)=\tau_{*} \circ \pi^{*}(t)$.
Definition 2.36 (Alternative definition of $\left.\mathrm{Z}^{r}(X)_{\text {alg }}\right)$. - The subgroup $\mathrm{Z}^{r}(X)_{\text {alg }}$ of cycles of codimension r algebraically equivalent to 0 is the subgroup generated by the cycles of codimension r the form $W(t)-W\left(t^{\prime}\right)$, for any smooth connected curve C, any points $t, t^{\prime} \in C$, and for any cycle $W \in Z^{r}(C \times X)$ each of whose components dominates C.

The group $A_{r}(X)$. - By definition it is clear that $\mathrm{Z}_{r}(X)_{\text {rat }} \subset \mathrm{Z}_{r}(X)_{\text {alg }}$, so we can define the following group quotient

Definition 2.37 (The continuous part of the Chow group). - The group quotient of cycles algebraically equivalent to 0 modulo rational equivalence is denoted by

$$
\mathrm{A}_{r}(X)=\frac{\mathrm{Z}_{r}(X)_{\mathrm{alg}}}{\mathrm{Z}_{r}(X)_{\mathrm{rat}}} \subset \mathrm{CH}_{r}(X)
$$

This group should be thought of as the continuous part of the Chow group of r-cycles (see [3, Introduction]).
2.4. Homological Equivalence. - Let X be a smooth projective variety over an algebraically closed field k.

Definition 2.38 (Weil-cohomology). - Fix a field F of characteristic 0 called the coefficient field. A Weil-cohomology theory is a contravariant functor $X \rightarrow H^{*}(X)$ from the category of varieties to the category of augmented, finite dimensional, anti-commutative F algebras which satisfies the following properties (see [12, §1.2.])

1. Poincaré duality: if $\operatorname{dim}(X)=n$, then
(a) The groups $H^{r}(X)=0$, for $r \neq 0, \ldots, 2 n$.
(b) There is a given orientation isomorphism: $H^{2 n}(X) \simeq F$ (note that in particular, $H^{0}(P) \simeq F$, for P a point).
(c) The canonical pairings: $H^{r}(X) \times H^{2 n-r}(X) \rightarrow H^{2 n}(X)$ are non-singular.

Let $H_{r}(X)$ be the F-vector space dual to $H^{r}(X)$. Then Poincaré duality states that there are isomorphisms: $H^{2 n-r}(X) \xrightarrow{\sim} H_{r}(X)$ induced by the map $a \mapsto\langle\cdot, a\rangle$, where $\langle\cdot, \cdot\rangle: H^{*}(X) \rightarrow F$ is the degree map.

Let $f: X \rightarrow Y$ be a morphism, $f^{*}=H^{*}(f): H^{*}(Y) \rightarrow H^{*}(X)$ and define a F-linear $\operatorname{map} f_{*}: H^{*}(X) \rightarrow H^{*}(Y)$ as the transpose of f^{*}. Then $f_{*}\left(\left(f^{*} a\right) \cdot b\right)=a \cdot f_{*} b$.
2. Künneth formula: let $\mathrm{pr}_{X}: X \times Y \rightarrow X$ and $\mathrm{pr}_{Y}: X \times Y \rightarrow Y$ be the projections. Then

$$
\begin{array}{clc}
H(X) \otimes_{F} H(Y) & \longrightarrow & H(X \times Y) \\
a \otimes b & \longmapsto & \operatorname{pr}_{X}^{*}(a) \cdot \operatorname{pr}_{Y}^{*}(b)
\end{array}
$$

is an isomorphism.
3. Cycle maps: there are groups homomorphisms $c l_{X}: \mathrm{Z}^{r}(X) \rightarrow H^{2 r}(X)$ satisfying the following properties:

- functorial in the sense that for a morphism of varieties $f: X \rightarrow Y$, one has $f^{*} \circ c l_{Y}=$ $c l_{X} \circ f^{*}$ and $f_{*} \circ c l_{X}=c l_{Y} \circ f_{*}$.
- Multiplicativity: $c l_{X \times Y}(Z \times W)=c l_{X}(Z) \otimes c l_{Y}(W)$;
- Non-triviality: if P is a point, then $c l: Z^{*}(P)=\mathbb{Z} \rightarrow H^{*}(P)=F$ is the canonical inclusion.

The elements of $H^{*}(X)$ are called cohomology classes, the multiplication on $H^{*}(X)$ is called cup product.

Remark 2.39. - There are other more restrictive definitions of a Weil cohomology theory, see for example [18, Definition 1.2.13], where they define the Weil cohomology over the category of smooth projective reduced schemes over an arbitrary field k and they state that a Weil cohomology theory also satisfies the following properties:
a. There are cycle class maps: $\mathrm{cl}_{X}: \mathrm{CH}^{r}(X) \rightarrow H^{2 r}(X)$ which are functorial, compatible with intersection product and compatible with points.
b. Weak Lefschetz holds: if $i: Y \hookrightarrow X$ is a smooth hyperplane section of a variety of dimension n, then $H^{r}(X) \xrightarrow{i^{*}} H^{r}(Y)$ is an isomorphism for $r<n-1$ and is injective for $r=n-1$.
c. Hard Lefschetz holds: the Lefschetz operator $L(\alpha)$ induces isomorphisms

$$
L^{n-r}: H^{n-r}(X) \xrightarrow{\sim} H^{n+r}(X), 0 \leq r \leq n .
$$

Fixing a Weil-cohomology theory we can now define the homological equivalence
Definition 2.40 (Homological equivalence). - A cycle Z of codimension r on X is homologically equivalent to 0 , denoted by $Z \sim_{\text {hom }} 0$, if $c l_{X}(Z)=0$.

This definition depends on the choice of a Weil cohomology theory ([18, Definition 1.2.16]). The set of cycles of codimension r homologically equivalent to 0 form a group, it is denoted by $\mathbf{Z}^{r}(X)_{\text {hom }}$.
Publications mathématiques de Besançon - 2024

The group $\mathrm{CH}_{r}(X)_{\text {hom }}$. - Let X be a smooth complex quasi-projective variety or more generally let X be a smooth projective reduced scheme over an arbitrary field k, fixing a Weil cohomology theory we have the following lemma

Lemma 2.41. - Let $\operatorname{dim}(X)=n$ and let $l_{X}(Z) \in H^{2 n-2 r}(X)$ be the class of a r-cycle Z on X. If $Z \sim_{\text {rat }} 0$, then $c l_{X}(Z)=0$.

Proof. - For the complex case, see proof of [23, Lemma 9.18]. For the general case, note that this property forms part of the properties of the Weil cohomology theory (see item a of Remark 2.39).

By this lemma and the fundamental theorem on homomorphisms, the cycle map: $c l_{X}$: $\mathrm{Z}_{r}(X) \rightarrow H^{2 n-2 r}(X)$ thus gives the cycle class map

$$
\mathrm{cl}_{X}: \mathrm{CH}_{r}(X) \longrightarrow H^{2 n-2 r}(X)
$$

Definition 2.42 (The group $\left.\mathrm{CH}_{r}(X)_{\text {hom }}\right)$. - The kernel of the cycle class map cl_{X} is denoted by

$$
\mathrm{CH}_{r}(X)_{\mathrm{hom}}=\operatorname{Ker}\left(\mathrm{cl}_{X}: \mathrm{CH}_{r}(X) \longrightarrow H^{2 n-2 r}(X)\right)
$$

Note that $\mathrm{CH}_{r}(X)_{\text {hom }}$ is the group of r-cycles homologically equivalent to 0 modulo rational equivalence, i.e., $\mathrm{CH}_{r}(X)_{\mathrm{hom}}=\frac{\mathrm{Z}_{r}(X)_{\mathrm{hom}}}{\mathrm{Z}_{r}(X)_{\text {rat }}}$.
2.5. Relation between algebraic, rational and homological equivalence. - Let X be a smooth projective reduced scheme over an algebraically closed field k of characteristic 0 , then we have the following proposition.

Proposition 2.43. - $\mathrm{Z}^{r}(X)_{\text {rat }} \subset \mathrm{Z}^{r}(X)_{\mathrm{alg}} \subset \mathrm{Z}^{r}(X)_{\mathrm{hom}}$.
Proof. - The inclusion $\mathrm{Z}^{r}(X)_{\text {rat }} \subset Z^{r}(X)_{\text {alg }}$ is clear by definition.
To prove the second inclusion $\mathrm{Z}^{r}(X)_{\mathrm{alg}} \subset \mathrm{Z}^{r}(X)_{\text {hom }}$, assume that $Z \in \mathrm{Z}^{r}(X)_{\mathrm{alg}}$, that is, $Z \sim_{\text {alg }} 0$, then by definition of algebraic equivalence there exits a connected smooth curve C, a cycle $W \in \mathrm{Z}^{r}(X \times C)$ each of whose components dominates C and points $t_{1}, t_{2} \in C$ such that Z is of the form $W\left(t_{1}\right)-W\left(t_{1}\right)$, where $W\left(t_{1}\right)=\tau_{*} \circ \pi^{*}\left(t_{1}\right)$ and $W\left(t_{2}\right)=\tau_{*} \circ \pi^{*}\left(t_{2}\right)$ with τ (resp. π) the restriction to W of the projection to X (resp. to C), see Remark 2.35.
Now consider the following commutative diagram

Note that since C is connected the cycle map $c l: \mathbb{Z}^{1}(C) \rightarrow H^{2}(C) \simeq \mathbb{Z}$ coincides with the degree map deg : $\mathrm{Z}_{0}(C) \rightarrow \mathbb{Z}$ of 0 -cycles on C, so for $t_{1}, t_{2} \in C$ we have $\operatorname{cl}\left(t_{1}\right)=\operatorname{cl}\left(t_{2}\right)=1$, then

$$
\tau_{*} \circ \pi^{*} \circ c l\left(t_{1}\right)=\tau_{*} \circ \pi^{*} \circ c l\left(t_{2}\right)
$$

By the commutativity of the diagram we have: $c l \circ \tau_{*} \circ \pi^{*}\left(t_{1}\right)=\tau_{*} \circ \pi^{*} \circ c l\left(t_{1}\right)$ and analogously we have $\tau_{*} \circ \pi^{*} \circ c l\left(t_{2}\right)=c l \circ \tau_{*} \circ \pi^{*}\left(t_{2}\right)$, it follows that $c l \circ \tau_{*} \circ \pi^{*}\left(t_{1}\right)=c l \circ \tau_{*} \circ \pi^{*}\left(t_{2}\right)$ which is equivalent to $\operatorname{cl}\left(W\left(t_{1}\right)\right)=\operatorname{cl}\left(W\left(t_{2}\right)\right)$. Since the cycle map is an homomorphism we have $c l\left(W\left(t_{1}\right)-W\left(t_{2}\right)\right)=c l(Z)=0$, then $Z \sim_{\text {hom }} 0$, that is, $Z \in Z^{r}(X)_{\text {hom }}$.
The above proposition is also true over an arbitrary field, see [18, §1.2.1.].
Rational, algebraic and homological equivalence of 0-cycles. - Let X be a smooth projective reduced scheme of dimension n over an algebraically closed field k of characteristic 0 .
From the Proposition 2.43 for the case $r=n$, one has $Z^{n}(X)_{\text {alg }} \subset Z^{n}(X)_{\text {hom }}$ or equivalently $\mathrm{Z}_{0}(X)_{\text {alg }} \subset \mathrm{Z}_{0}(X)_{\text {hom }}$.
Now in this subsection we will prove that if in addition X is connected the other inclusion also holds, therefore $\mathrm{Z}_{0}(X)_{\text {hom }}=\mathrm{Z}_{0}(X)_{\text {alg }}$. To prove it we use the following lemmas

Lemma 2.44. - (0 -cycles homologous to 0 have degree 0 and vice versa) Assume in addition that X is connected, and let $Z_{0}(X)_{\operatorname{deg}=0} \subset \mathrm{Z}_{0}(X)$ be the group of 0 -cycles of degree 0 . Then $\mathrm{Z}_{0}(X)_{\mathrm{hom}}=\mathrm{Z}_{0}(X)_{\mathrm{deg}=0}$.
Proof. - Since X is connected we have $H^{2 n}(X) \simeq \mathbb{Z}$. Then

$$
\mathrm{Z}_{0}(X)_{\mathrm{hom}}=\operatorname{Ker}\left(c l: \mathrm{Z}_{0}(X) \longrightarrow H^{2 n}(X)\right)=\operatorname{Ker}\left(\operatorname{deg}: \mathrm{Z}_{0}(X) \longrightarrow \mathbb{Z}\right)=\mathrm{Z}_{0}(X)_{\operatorname{deg}=0}
$$

i.e. the 0 -cycles homologous to 0 coincide with the 0 cycles of degree 0

Lemma 2.45. - If C be an integral (reduced and irreducible) smooth curve and $P_{1}, P_{2} \in C$ two points in C, then $P_{1} \sim_{\text {alg }} P_{2}$.

Proof. - We must show that there exists a smooth curve $D, W \in Z^{1}(C \times D)$ i.e. a family of 0 -cycles (or equivalently cycles of codimension 1) on C each of whose components dominates D, and points $t_{1}, t_{2} \in D$ such that $W\left(t_{1}\right)=P_{1}$ and $W\left(t_{2}\right)=P_{2}$, i.e., such that P_{1} and P_{2} are members of this family.
It is enough to take $D=C, W=\Delta=\{(a, b) \in C \times C: a=b\} \subset C \times C$ the diagonal, and $t_{1}=P_{1}$ and $t_{1}=P_{2}$.

Lemma 2.46. - If there exists a connected curve C such that its components are smooth and integral and P and Q are two points of C, then $P \sim_{\text {alg }} Q$.
Proof. - Assume that such a curve $C=C_{1} \cup \cdots \cup C_{r}$ exists, then without lost of generality we can assume that $P=P_{0} \in C_{1}, Q=P_{r} \in C_{r}$ and that $P_{i} \in C_{i} \cap C_{i+1}$ for all $i=1, \ldots, r-1$, then for the Lemma 2.45 we have $P_{i-1} \sim_{\text {alg }} P_{i}$ for all $i=1, \ldots, r$, then $P=P_{0} \sim_{\text {alg }} Q=P_{r}$.
Proposition 2.47 (Homological and algebraic equivalence coincide for 0-cycles). If X is connected, then $\mathrm{Z}_{0}(X)_{\mathrm{hom}}=\mathrm{Z}_{0}(X)_{\text {alg }}$.
Proof. - By Proposition 2.43 it is enough to prove that $\mathrm{Z}_{0}(X)_{\text {hom }} \subset \mathrm{Z}_{0}(X)_{\text {alg }}$. By Lemma 2.44 this is equivalent to prove that if a 0 -cycle has degree zero then it is algebraically equivalent to 0 , which we do next.
Let $Z=\sum m_{i} P_{i}$ be a 0 -cycle on X with degree zero, i.e., with $\sum m_{i}=0$, then we can consider $Z=P-Q$ with $P, Q \in X$, this holds true because since Z has degree zero it is generated by differences of this form. Indeed, observe that $Z=\sum m_{i} P_{i}=\sum m_{i}\left(P_{i}-Q\right)=\sum m_{i} P_{i}-\sum m_{i} Q$, for any $Q \in X$. By [[23], §8.2.1] there exits a smooth connected curve C containing $P, Q \in X$, then by Lemma $2.46 P \sim_{\text {alg }} Q$ or equivalently $Z=P-Q \sim_{\text {alg }} 0$.
Publications mathématiques de Besançon - 2024

Finally, we next study the relation between rational, algebraic and homological equivalence of 0-Cycles on a smooth projective variety.

Proposition 2.48. - Let X be a smooth projective variety of dimension n over an algebraically closed field k of characteristic 0 . Then $\mathrm{CH}_{0}(X)_{\mathrm{deg}=0}=\mathrm{CH}_{0}(X)_{\mathrm{hom}}=\mathrm{A}_{0}(X)$.

Proof. - Since by Lemma 2.44 we have $Z_{0}(X)_{\operatorname{deg}=0}=Z_{0}(X)_{\text {hom }}$ the first equality holds. On the other hand, by Proposition 2.47 we have that $\mathrm{Z}_{0}(X)_{\mathrm{hom}}=\mathrm{Z}_{0}(X)_{\mathrm{alg}}$, this gives the second equality.

If $\operatorname{dim}(X)=1$, that is, X is a smooth projective curve over an algebraically closed field k of characteristic 0 , we get the following important lemma for the proof of the main result of this thesis.

Lemma 2.49 (Fact 2). - Let C be a smooth projective curve over an algebraically closed field k of characteristic 0 . Then $\mathrm{CH}_{0}(C)_{\mathrm{deg}=0}=\mathrm{CH}_{0}(C)_{\mathrm{hom}}=\mathrm{A}_{0}(C)$.

Proof. - Apply Proposition 2.48 when $\operatorname{dim}(X)=1$.

3. Hodge Theory and The Abel-Jacobi Map

In this section we recall some facts about Hodge theory. We start with the notion of Hodge structure and polarized varieties, then we study the notion of complex torus associated to the Hodge structure on the cohomology group $H^{1}(X)$ of a compact Kähler manifold X showing that it coincides with the Picard group $\operatorname{Pic}^{0}(X)$ and that if X is smooth and projective $\operatorname{Pic}^{0}(X)$ is an abelian variety. Next we define the morphism of Hodge structures.
In this section we also define the k-th intermediate Jacobian which is a complex torus associated to the $(2 k-1)$-th cohomology group of X, then we see that the Jacobian torus $J(X)$ coincides with $\operatorname{Pic}^{0}(X)$ so if X is smooth and projective it has the structure of an abelian variety, we next study the relation between the cohomology group of a curve and its Jacobian, after that we define the Albanese map and the Albanese variety. In particular, the topics of this section gives us the background to prove Fact 3 (Lemma 3.33) and Fact 1 (Lemma 3.46). The main reference for this section is [22], see also [19].

3.1. Hodge Structure and Polarized Varieties. - First recall the definition of a Kähler manifold.

Definition 3.1 (Kähler manifold). - A Kähler manifold is a complex manifold equipped with a hermitian metric whose imaginary part, which is a 2-form of type $(1,1)$ relative to the complex structure, is closed. This 2-form is called the Kähler form.

Example 3.2. - Smooth projective complex manifolds are special cases of compact Kähler manifolds.

Hodge structure. -
Definition 3.3 (Integral Hodge structure of weight k). - An integral Hodge structure of weight k is given by a free abelian group $V_{\mathbb{Z}}$ of finite type, together with a decomposition of its complexification: $V_{\mathbb{C}}:=V_{\mathbb{Z}} \otimes \mathbb{C}=\bigoplus_{p+q=k} V^{p, q}$ such that $V^{p, q}=\overline{V^{q, p}}$.
Definition 3.4 (Integral Hodge substructure). - An integral Hodge substructure is a subgroup $W_{\mathbb{Z}} \subset V_{\mathbb{Z}}$ such that $W_{\mathbb{C}}:=W_{\mathbb{Z}} \otimes \mathbb{C}$ has a decomposition induced by that of $V_{\mathbb{C}}$, i.e., $W_{\mathbb{C}}=\bigoplus_{p+q=k} W_{\mathbb{C}} \cap V^{p, q}$.

Example 3.5. - The integral cohomology group $H^{k}(X, \mathbb{Z})$ of a compact Kähler manifold carries a weight k Hodge structure. Indeed, recall that given a compact complex manifold X, there is an isomorphism: $\mathcal{H}^{k}(X) \cong H^{k}(X, \mathbb{C})$, where $\mathcal{H}^{k}(X)$ is the set of complex valued harmonic forms for the Laplacian associated to any metric on X. When the metric is Kähler there is a decomposition of harmonic forms into harmonic forms of type (p, q). Thus, there is an induced decomposition: $H^{k}(X, \mathbb{C})=\bigoplus_{p+q=k} H^{p, q}(X)$, where $H^{p, q}(X)$ is the set of classes representable by closed forms of type (p, q) and it satisfies the Hodge symmetry: $H^{p, q}(X)=\overline{H^{q, p}(X)}$. This decomposition is called the Hodge decomposition of the cohomology of a compact Kähler manifold ($[22, \S 6.1 .3]$).
Given such a decomposition, we define the associated Hodge filtration $F^{\bullet} V$ by: $F^{p} V_{\mathbb{C}}=$ $\bigoplus_{r \geq p} V^{r, k-r}=V^{p, k-p} \oplus \cdots \oplus V^{k, 0}$. It is a decreasing filtration on $V_{\mathbb{C}}$, which satisfies: $V_{\mathbb{C}}=$ $F^{p} V_{\mathbb{C}} \oplus \overline{F^{k-p+1} V_{\mathbb{C}}}$.
 $\overline{F^{q} V_{\mathbb{C}}}$.

Let X be an n-dimensional compact Kähler manifold of Kähler form ω, then the cup product with the class $[\omega] \in H^{2}(X, \mathbb{R})$ of ω gives the Lefschetz operator

$$
L: H^{k}(X, \mathbb{R}) \longrightarrow H^{k+2}(X, \mathbb{R})
$$

This operator gives:

- the Lefschetz decomposition: $H^{k}(X, \mathbb{R})=\bigoplus_{r} L^{r} H_{\text {prim }}^{k-2 r}$, where each component admits an induced Hodge decomposition,
- an intersection form on $H^{k}(X, \mathbb{R})$ for $k \leq n: Q(\alpha, \beta)=\int_{X} \omega^{n-k} \wedge \alpha \wedge \beta=\left\langle L^{n-k} \alpha, \beta\right\rangle . Q$ is alternating if k is odd, symmetric otherwise.

Then we have an Hermitian form: $H(\alpha, \beta)=i^{k} Q(\alpha, \bar{\beta})$ on $H^{k}(X, \mathbb{C})$, induced by the intersection form Q.

Definition 3.7. - The class [ω] of the Kähler form ω of X is called integral if $[\omega$] belongs to $H^{2}(X, \mathbb{Z}) \subset H^{2}(X, \mathbb{R})$.

Definition 3.8. - (Polarized Hodge structure) An integral polarised Hodge structure of weight k is given by a Hodge structure $\left(V_{\mathbb{Z}}, F^{p} V_{\mathbb{C}}\right)$ of weight k, together with an intersection form Q on $V_{\mathbb{Z}}$, which is symmetric if k is even, alternating otherwise, and satisfies conditions (i) and (ii) in [22, §7.1.2].

Publications mathématiques de Besançon - 2024

Polarized varieties. -

Definition 3.9 (Polarized manifold). - A polarized manifold is a pair $(X,[\omega])$, where X is a compact complex manifold, and [ω] is an integral Kähler class on X.
Definition 3.10 (Chern form). - Let X be a complex manifold, \mathcal{L} a holomorphic line bundle on X, and h a Hermitian metric on \mathcal{L}. The 2 -form $\omega_{\mathcal{L}, h}$, which is closed and real of type $(1,1)$, is called the Chern form associated to the hermitian metric h on \mathcal{L}. We say that $\omega_{\mathcal{L}, h}$ is positive if it correspond to a Hermitian metric on $X([22,3.3 .1])$.
As a consequence of Theorem 7.10 in [22], given a polarised manifold ($X,[\omega]$) there exits a holomorphic line bundle \mathcal{L} on X and a Hermitian metric h such that $\omega_{\mathcal{L}, h}=\omega$ is a positive form. We say that \mathcal{L} is positive and we have the following theorem called Kodaira Embedding Theorem.

Theorem 3.11 (Kodaira Embedding Theorem). - Let X be a compact complex manifold and \mathcal{L} a positive holomorphic line bundle on X. Then for every sufficiently large $N \in \mathbb{Z}$ there exists a holomorphic embedding $\phi: X \rightarrow \mathbb{P}^{r}$ such that $\phi^{*}\left(\mathcal{O}_{\mathbb{P}^{r}}(1)\right)=\mathscr{L}^{\otimes N}$, where \mathscr{L} is the sheaf of holomorphic sections of \mathcal{L}.
Proof. - See [22, Theorem 7.11].
Corollary 3.12. - A polarized manifold is a projective variety, i.e., admits a holomorphic embedding into a projective space.

Proof. - It follows from the comment above the Kodaira Embedding Theorem together with the Kodaira Embedding Theorem.
Abelian variety associated to the Hodge structure of weight 1. - Let X be compact Kähler manifold. The Hodge structure on $H^{1}(X)$ is described by the decomposition: $H^{1}(X, \mathbb{C})=$ $H^{1,0}(X) \oplus H^{0,1}(X)$, satisfying $H^{0,1}(X)=\overline{H^{1,0}(X)}$.
Then we have an isomorphism of real vector spaces $H^{1}(X, \mathbb{R}) \rightarrow H^{0,1}(X)$ obtained by the composition of the inclusion $H^{1}(X, \mathbb{R}) \subset H^{1}(X, \mathbb{C})$ and the projection $H^{1}(X, \mathbb{C}) \rightarrow H^{0,1}(X)$ given by the Hodge decomposition of $H^{1}(X, \mathbb{C})$.
It follows that the lattice $H^{1}(X, \mathbb{Z}) \subset H^{1}(X, \mathbb{R})$ projects onto a lattice in the complex vector space $H^{0,1}(X)$. Thus identifying this last lattice with $H^{1}(X, \mathbb{Z})$ via the above isomorphism we have a complex torus

$$
T=\frac{H^{0,1}(X)}{H^{1}(X, \mathbb{Z})}
$$

associated to the Hodge structure on $H^{1}(X)$.
Now we prove that the complex torus T coincides with the group of isomorphism classes of holomorphic line bundles over X with Chern class 0.
For this recall that we have the exponential exact sequence $0 \rightarrow \mathbb{Z} \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}^{*} \rightarrow 0$, then we have an associated long exact sequence

$$
\begin{aligned}
& 0 \longrightarrow H^{0}(X, \mathbb{Z}) \xrightarrow{\psi_{0}} H^{0}\left(X, \mathcal{O}_{X}\right) \xrightarrow{\varphi_{0}} H^{0}\left(X, \mathcal{O}_{X}^{*}\right) \xrightarrow{c_{0}} H^{1}(X, \mathbb{Z}) \xrightarrow{\psi_{1}} H^{1}\left(X, \mathcal{O}_{X}\right) \\
& \xrightarrow{\varphi_{1}} H^{1}\left(X, \mathcal{O}_{X}^{*}\right) \xrightarrow{c_{1}} H^{2}(X, \mathbb{Z}) \longrightarrow H^{2}\left(X, \mathcal{O}_{X}\right) \longrightarrow H^{2}\left(X, \mathcal{O}_{X}^{*}\right) \xrightarrow{c_{2}} \ldots
\end{aligned}
$$

Recall also that the group $H^{1}\left(X, \mathcal{O}_{X}^{*}\right)$ can be identified with the Picard group of isomorphism classes of holomorphic line bundles L over X (see [22, Theorem 4.49]).

Definition 3.13 (First Chern class homomorphism). - The connecting homomorphism $c_{1}: H^{1}\left(X, \mathcal{O}_{X}^{*}\right) \rightarrow H^{2}(X, \mathbb{Z})$ is called the first Chern class homomorphism and the class $c_{1}(L)$ is called the first Chern class of L, see [22, p. 162].
Definition 3.14 (The group $\operatorname{Pic}^{0}(X)$). - Set

$$
\operatorname{Pic}^{0}(X)=\operatorname{Ker}\left(c_{1}: H^{1}\left(X, \mathcal{O}_{X}^{*}\right) \longrightarrow H^{2}(X, \mathbb{Z})\right)
$$

for the kernel of the first Chern class homomorphism c_{1}. This is the group of the isomorphism classes of holomorphic line bundles over X of first Chern class zero.
Proposition 3.15. $-T=\operatorname{Pic}^{0}(X)$.
Proof. - From the exactness of the above long sequence we have $\operatorname{Pic}^{0}(X)=\operatorname{im}\left(\varphi_{1}\right)$. By the fundamental theorem of homomorphisms we have $\operatorname{im}\left(\varphi_{1}\right) \cong \frac{H^{1}\left(X, \mathcal{O}_{X}\right)}{\operatorname{Ker}\left(\varphi_{1}\right)}$ and by the exactness of the above long sequence again we have that $\operatorname{Ker}\left(\varphi_{1}\right)=\operatorname{im}\left(\psi_{1}\right)$, then $\operatorname{Pic}^{0}(X)=\frac{H^{1}\left(X, \mathcal{O}_{X}\right)}{\operatorname{im}\left(\psi_{1}\right)}$. By $[22, \S 7.2 .2]$ we have a natural isomorphism $H^{0,1}(X) \cong H^{1}\left(X, \mathcal{O}_{X}\right)$, so $\operatorname{Pic}^{0}(X)=\frac{H^{0,1}(X)}{\operatorname{im}\left(\psi_{1}\right)}$. So, in order to prove the proposition it is enough to prove that we can identify $\operatorname{im}\left(\psi_{1}\right)=$ $\psi_{1}\left(H^{1}(X, \mathbb{Z})\right)$ with $H^{1}(X, \mathbb{Z})$ itself, that is, we must prove that ψ_{1} is injective so $H^{1}(X, \mathbb{Z})$ is really isomorphic to $\psi_{1}\left(H^{1}(X, \mathbb{Z})\right)$. Indeed, by the exactness of the above long sequence we have $\operatorname{Ker}\left(\psi_{1}\right)=\operatorname{im}\left(c_{0}\right)$, so in order to prove that ψ_{1} is injective we must prove that $\operatorname{Ker}\left(\psi_{1}\right)=$ $\operatorname{im}\left(c_{0}\right)=0$, i.e., that c_{0} is the zero map or in other words that $\operatorname{Ker}\left(c_{0}\right)=H^{0}\left(X, \mathcal{O}_{X}^{*}\right)$. But since $\operatorname{Ker}\left(c_{0}\right)=\operatorname{im}\left(\varphi_{0}\right)$, by the exactness of the above long sequence, it is enough to prove that $\operatorname{im}\left(\varphi_{0}\right)=H^{0}\left(X, \mathcal{O}_{X}^{*}\right)$, i.e., that φ_{0} is surjective. Assuming that X is projective we have $H^{0}\left(X, \mathcal{O}_{X}\right)=\mathbb{C}$ and $H^{0}\left(X, \mathcal{O}_{X}^{*}\right)=\mathbb{C}^{*}$ and φ_{0} is the exponential map of complex numbers so it is surjective.
Remark 3.16. — The torus T associated to the Hodge structure on $H^{1}(X)$ is itself a Kähler manifold, and thus admits a Hodge structure on its group $H^{1}(T)$, see [22, p. 169].
Now let us study the relationship between the Hodge structure on $H^{1}(X)$ and the Hodge structure on $H^{1}(T)$ (see $\left.[22, \S 7.2 .1]\right)$.

Lemma 3.17. - The Hodge structure on $H^{1}(T, \mathbb{Z})$ is dual to that of $H^{1}(X, \mathbb{Z})$.
Proof. - For a torus $T=\frac{V}{\Gamma}$, where V is a complex vector space, we have a natural identification: $\Gamma=H_{1}(T, \mathbb{Z})$ and $V^{*}=H^{1}(T, \mathbb{R})$. Furthermore, the holomorphic cotangent bundle of T is trivial, as its global sections are given by the complex linear forms on V, considered as holomorphic forms on V invariant under Γ. It follows that $H^{1,0}(T)=V^{*}$. Thus the Hodge structure on $H^{1}(T, \mathbb{Z})$ is dual to that of $H^{1}(X, \mathbb{Z})$, that is, $H^{1}(T, \mathbb{Z})=H^{1}(X, \mathbb{Z})^{*}$ and $H^{1,0}(T)=H^{0,1}(X)^{*}$.
In what follows we prove the following proposition (see [22, Proposition 7.16])
Proposition 3.18. - The complex torus $T=\operatorname{Pic}^{0}(X)$ of a projective smooth variety is an algebraic projective variety.
Proof. - Suppose now that X is a polarised manifold, and let L be the Lefschetz operator acting on the integral cohomology of X. Obviously, the cohomology of degree 1 is primitive, and thus the alternating intersection form $Q(\alpha, \beta)=\left\langle L^{n-1} \alpha, \beta\right\rangle, n=\operatorname{dim}(X)$, defined on $H^{1}(X)$ and with integral values on $H^{1}(X, \mathbb{Z})$ satisfies the property that the Hermitian form Publications mathématiques de Besançon - 2024
$H(\alpha, \beta)=i Q(\alpha, \bar{\beta})$ is positive definite on $H^{1,0}(X)$, which is orthogonal to $H^{0,1}(X)$ for H, equivalently, this means that the form $Q \in \Lambda^{2}\left(H^{1}(X, \mathbb{Z})\right)^{*}$ can be considered as an element ω of $\bigwedge^{2}\left(H^{1}(T, \mathbb{Z})^{*}\right)=\bigwedge^{2}\left(H^{1}(T, \mathbb{Z})\right)=H^{2}(T, \mathbb{Z})$. In fact, the de Rham class of ω is simply the class of the constant 2-form Ω on T obtained by extending Q by \mathbb{R}-linearity. If we identify $H_{1}(T, \mathbb{Z})$ with $H^{1}(X, \mathbb{Z})$, and thus $H_{1}(T, \mathbb{Z}) \otimes \mathbb{R}$ with $H^{1}(X, \mathbb{R})$, this differential form $\Omega=Q$ on $H^{1}(X, \mathbb{R})$.
The properties of Q then imply that the form Ω is a Kähler form on T. As the Kähler form thus defined on T is a of integral class, T is polarized manifold and Kodaira's theorem (Theorem 3.11) implies that T is an algebraic projective variety, see also Corollary 3.12.

Definition 3.19. - (Abelian variety) A complex torus that is also an algebraic projective variety is called an abelian variety.

From the Proposition 3.18 we have that the complex torus $T=\operatorname{Pic}^{0}(X)$ of a projective smooth variety X is an abelian variety.
Definition 3.20. - (Picard variety) The Abelian variety $T=\operatorname{Pic}^{0}(X)$ of a smooth projective variety X is called the Picard variety of X.
3.2. Morphisms of Hodge Structures. - Let $\left(V_{\mathbb{Z}}, F^{p} V_{\mathbb{C}}\right)$ and $\left(W_{\mathbb{Z}}, F^{p} W_{\mathbb{C}}\right)$ be Hodge structures of weight n and $m=n+2 r, r \in \mathbb{Z}$ respectively.

Definition 3.21 (Morphism of Hodge structures). - A morphism of groups $\phi: V_{\mathbb{Z}} \rightarrow$ $W_{\mathbb{Z}}$ is a morphism of Hodge structures (of type (r, r)) if the morphism $\phi: V_{\mathbb{C}} \rightarrow W_{\mathbb{C}}$ obtained by \mathbb{C}-linear extension, satisfies $\phi\left(F^{p} V_{\mathbb{C}}\right) \subset F^{p+r} W_{\mathbb{C}}$, or equivalently, $\phi\left(V^{p, q}\right) \subset W^{p+r, q+r}$.

Remark 3.22. - A morphism of Hodge structures ϕ induces a Hodge structure on $\operatorname{Ker}(\phi)$, see [22, Lemma 7.25].

Two important examples of morphisms of Hodge structures are the following
Definition 3.23 (Pullback homomorphism). - Let $\phi: X \rightarrow Y$ be a continuous map between two topological spaces. The homomorphism $\phi^{*}: H^{k}(Y, \mathbb{Z}) \rightarrow H^{k}(X, \mathbb{Z})$, of cohomology groups is called the pullback homomorphism induced by ϕ.

The pullback homomorphism is induced by the natural morphism of sheaves $\mathbb{Z}_{Y} \rightarrow \phi_{*} \mathbb{Z}_{X}$. There are other ways to define ϕ^{*}, see for example [22, §7.3.2].
Proposition 3.24. - If $\phi: X \rightarrow Y$ is a holomorphic map between Kähler manifolds then $\phi^{*}: H^{k}(Y, \mathbb{Z}) \rightarrow H^{k}(X, \mathbb{Z})$ is a morphism of Hodge structures.

Proof. - See [19, Corollary 1.13.] or [22, p. 177].
Definition 3.25 (Gysin homomorphism). - Let $\phi: X \rightarrow Y$ be a morphism between two Kähler manifolds of dimension n and $n+r$ respectively. The homomorphism in cohomology groups $\phi_{*}: H^{k}(X, \mathbb{Z}) \rightarrow H^{k+2 r}(Y, \mathbb{Z})$ is called the Gysin homomorphism induced by ϕ.

The Gysin homomorphism is defined using Poincaré duality for X and Y as the morphism $\phi_{*}: H_{2 n-k}(X, \mathbb{Z}) \rightarrow H_{2 n-k}(Y, \mathbb{Z})$ on singular homology groups, and ϕ_{*} is defined in the singular chains. For other ways to define ϕ_{*}, see [22, §7.3.2].

Proposition 3.26. - The Gysin morphism ϕ_{*} is a morphism of Hodge structures of bidegree (r, r), that is, it takes classes α of type (p, q) to classes $\phi_{*}(\alpha)$ of type $(p+r, q+r)$.
Proof. - See [22, p. 179].
A important property for us is the following
Proposition 3.27. - The Gysin homomorphism ϕ_{*} on cohomology groups induce a Hodge structure on its kernel.

Proof. - It follows by Remark 3.22 since ϕ_{*} is a morphism of Hodge structures by Proposition 3.26.

3.3. The Intermediate Jacobian. -

The k-th intermediate Jacobian. - Let X be a compact Kähler manifold.
Recall that for every $k>0$, the Hodge filtration on $H^{2 k-1}(X, \mathbb{C})$ determines the Hodge decomposition (Remark 3.6), that is, $H^{2 k-1}(X, \mathbb{C})=F^{k} H^{2 k-1}(X) \oplus \overline{F^{k} H^{2 k-1}(X)}$, then $F^{k} H^{2 k-1}(X) \cap H^{2 k-1}(X, \mathbb{R})=\{0\}$, and the decomposition map gives an isomorphism: $H^{2 k-1}(X, \mathbb{R}) \rightarrow \frac{H^{2 k-1}(X, \mathbb{C})}{F^{k} H^{2 k-1}(X)}$.
In consequence, the lattice $H^{2 k-1}(X, \mathbb{Z})$ in $H^{2 k-1}(X, \mathbb{R})$ gives a lattice in the \mathbb{C}-vector space $\frac{H^{2 k-1}(X, \mathbb{C})}{F^{k} H^{2 k-1}(X)}$. Identifying this last lattice with $H^{2 k-1}(X, \mathbb{Z})$ via the above isomorphism we define the k-th intermediate Jacobian of a compact Kähler manifold as follows

Definition 3.28 (The k-th intermediate Jacobian). - The k-th intermediate Jacobian is defined by $J^{2 k-1}(X)=\frac{H^{2 k-1}(X, \mathbb{C})}{F^{k} H^{2 k-1}(X) \oplus H^{2 k-1}(X, \mathbb{Z})}$.
More generally, we can define a complex torus for every Hodge structure of weight $2 k-1$ as follows (see [22, Remark 12.3])

Definition 3.29 (Complex torus for Hodge structure of weight $2 k-1$). - Let $V_{\mathbb{Z}}$ be a Hodge structure of weight $2 k-1$. The complex torus associated to it is defined by $J^{2 k-1}(V):=\frac{V_{\mathbb{C}}}{\left(F^{k} V \oplus V_{\mathbb{Z}}\right)}$.
This construction is functorial, in the sense that every morphism of Hodge structures $\left(V_{\mathbb{Z}}, F^{\bullet} V\right) \rightarrow\left(W_{\mathbb{Z}}, F^{\bullet+r} W\right)$ of bidegree (r, r) induces a morphism of complex tori $J^{2 k-1}(V) \rightarrow$ $J^{2(k+r)-1}(W)$.

The Jacobian of a smooth projective variety is an Abelian variety. - Recall that given a compact Kähler manifold X we define the group

$$
\operatorname{Pic}^{0}(X):=\operatorname{Ker}\left(H^{1}\left(X, \mathcal{O}_{X}^{*}\right) \xrightarrow{c_{1}} H^{2}(X, \mathbb{Z})\right)
$$

(Definition 3.14) and using the long exact sequence associated to the exponential exact sequence $0 \rightarrow \mathbb{Z} \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}^{*} \rightarrow 0$ we proved that $\operatorname{Pic}^{0}(X)=T$, where $T=\frac{H^{0,1}(X)}{H^{1}(X, \mathbb{Z})}$ is the complex torus associated to the Hodge structure on $H^{1}(X, \mathbb{Z})$ (see Proposition 3.15). The following proposition gives an alternative definition of the complex torus $\operatorname{Pic}^{0}(X)$.
Proposition 3.30.- $J^{1}(X)=\operatorname{Pic}^{0}(X)$, where $J^{1}(X)$ is the 1-th intermediate Jacobian of X.
Publications mathématiques de Besançon - 2024

Proof. - By definition the 1-th intermediate Jacobian is $J^{1}(X)=\frac{H^{1}(X, \mathbb{C})}{F^{1} H^{1}(X) \oplus H^{1}(X, \mathbb{Z})}$. Now recall that there is an identification $\frac{H^{1}(X, \mathbb{C})}{F^{1} H^{1}(X)}=H^{1}\left(X, \mathcal{O}_{X}\right)$, then $J^{1}(X)=\frac{H^{1}\left(X, \mathcal{O}_{X}\right)}{H^{1}(X, \mathbb{Z})}$. By [22, §7.2.2] we have a natural isomorphism $H^{0,1}(X) \cong H^{1}\left(X, \mathcal{O}_{X}\right)$, it follows that $J^{1}(X)=$ $\frac{H^{0,1}(X)}{H^{1}(X, \mathbb{Z})}=T=\operatorname{Pic}^{0}(X)$, where the last equality holds by Proposition 3.15.

Proposition 3.31. - The 1-th intermediate Jacobian $J^{1}(X)$ of a smooth projective variety X is an Abelian variety.

Proof. - It follows from Proposition 3.30 and Proposition 3.18.
Remark 3.32. - In general, the k-th intermediate Jacobian $J^{2 k-1}(X)$ is a transcendental object even if X is a smooth projective variety whose nature is much more difficult to understand than of $J^{1}(X)$.

Cohomology group of a curve and its Jacobian. - Recall that a complex smooth projective curve C is an example of complex compact Kähler manifold of dimension 1 (see Example 3.2). In this subsection we will prove an important isomorphism between the first cohomology group of a connected complex smooth projective curve C and the first cohomology group of its Jacobian $J(C)$. More precisely,

Lemma 3.33 (Fact 3). - Let C be a connected complex smooth projective curve. Then the homomorphism $w_{*}: H^{1}(J(C), \mathbb{Z}) \rightarrow H^{1}(C, \mathbb{Z})$ on cohomology groups is an isomorphism.

Proof. - Since in particular C is a complex compact Kähler manifold of dimension 1, by Proposition 3.30 we have that $J(C)=T=\operatorname{Pic}^{0}(C)$, where $T=\frac{H^{0,1}(C)}{H^{1}(C, \mathbb{Z})}$ is the complex torus associated to the Hodge structure on $H^{1}(C, \mathbb{Z})$, so $J(C)$ is itself a Kähler manifold and thus admits a Hodge structure on its group $H^{1}(J(C))$ (see Remark 3.16), by Lemma 3.17 we have $H^{1}(J(C), \mathbb{Z}) \cong H^{1}(C, \mathbb{Z})^{*}$ and since C is connected and oriented (see [6, C.2.1]) by Poincaré duality (see [22, Theorem 5.30]) we have that $H^{1}(C, \mathbb{Z})^{*} \cong H^{1}(C, \mathbb{Z})$. It follows that $H^{1}(J(C), \mathbb{Z}) \cong H^{1}(C, \mathbb{Z})$.

Remark 3.34. - The existence of the isomorphism in Lemma 3.33 is also true for connected smooth projective curves C over an arbitrary algebraically closed field of characteristic zero, that is, the homomorphism $w_{*}: H_{e t}^{1}\left(J(C), \mathbb{Q}_{l}\right) \rightarrow H_{e t}^{1}\left(C, \mathbb{Q}_{l}\right)$ is an isomorphism (see [1, Remark 4]).
3.4. The Abel-Jacobi Map and The Albanese map. - Let X be a compact Kähler manifold of dimension n.

Definition 3.35 (The Abel-Jacobi map). - Let $Z^{k}(X)_{\text {hom }}$ be the group of cycles of codimension k homologous to 0 (also called cohomologous to 0), let $J^{2 k-1}(X)$ be the k-th intermediate Jacobian. The Abel-Jacobi map is a morphism

$$
\Phi_{X}^{k}: \mathrm{Z}^{k}(X)_{\mathrm{hom}} \longrightarrow J^{2 k-1}(X)
$$

defined by $Z \mapsto \Phi_{X}^{k}(Z)=\int_{\gamma}$, where $\gamma \subset X$ is a differentiable chain of dimension $2 n-2 k+1$ such that $\partial \gamma=Z$ and $\int_{\gamma} \in \frac{F^{n-k} H^{2 n-2 k+1}(X)^{*}}{H_{2 n-2 k+1}(X, \mathbb{Z})}=J^{2 k-1}(X)$, see [22, §12.1.2].

The equality $J^{2 k-1}(X)=\frac{F^{n-k} H^{2 n-2 k+1}(X)^{*}}{H_{2 n-2 k+1}(X, \mathbb{Z})}$ in the above definition holds thanks to Poincaré duality ([22, §12.1.2]).
If we want to work in terms of dimension note that for $Z \in Z_{l}(X)_{\text {hom }}$ we have the Abel-Jacobi invariant $\Phi_{X}^{n-l}(Z) \in J^{2(n-l)-1}(X)$.

Lemma 3.36. - If $Z \in \mathrm{Z}_{l}(X)_{\mathrm{rat}}$, then $\Phi_{X}^{n-l}(Z)=0$ in $J^{2(n-l)-1}(X)$.
Proof. - See [23, Lemma 9.19].
Thanks to the above lemma we prove the existence of the Abel-Jacobi (class) map in the following proposition.

Proposition 3.37. - There exists a unique homomorphism $\mathrm{CH}_{l}(X)_{\mathrm{hom}} \rightarrow J^{2(n-l)-1}(X)$ from the group of l-cycles on X homologous to 0 modulo rational equivalence to the complex torus $J^{2(n-l)-1}(X)$.
Proof. - Consider the Abel-Jacobi map $\Phi_{X}^{n-l}: \mathrm{Z}_{l}(X)_{\mathrm{hom}}=\mathrm{Z}^{n-l}(X)_{\text {hom }} \rightarrow J^{2(n-l)-1}(X)$. Observe that $Z_{l}(X)_{\text {rat }}$ is a normal subgroup of $Z_{l}(X)_{\text {hom }}$ by Proposition 2.43 , so the natural surjective homomorphism $\varphi: \mathrm{Z}_{l}(X)_{\text {hom }} \rightarrow \frac{\mathrm{Z}_{l}(X)_{\text {hom }}}{Z_{l}(X)_{\text {rat }}}$ is well defined.
By Lemma 3.36 we have $\mathrm{Z}_{l}(X)_{\text {rat }} \subset \operatorname{Ker}\left(\Phi_{X}^{n-l}: \mathrm{Z}_{l}(X)_{\text {hom }} \rightarrow J^{2(n-l)-1}(X)\right)$, then by the fundamental theorem on homomorphism, there exists a unique homomorphism $\frac{\mathrm{Z}_{l}(X)_{\mathrm{hom}}}{\mathrm{Z}_{l}(X)_{\mathrm{rat}}}=$ $\mathrm{CH}_{l}(X)_{\text {hom }} \rightarrow J^{(2 n-2 l)-1}(X)$ such that the following diagram commutes

Remark 3.38. - When $l=0$, by abuse of notation, the Abel-Jacobi (class) map of Proposition 3.37 is usually denoted by $a^{2 l b} b_{X}$ and called the Albanese map (see [[23], Theorem 10.11]), but there is another map also denoted by $a l b_{X}$ and called the Albanese map which we will define later.

The Abel-Jacobi map for divisors. - Now we give an useful alternative definition of the Abel-Jacobi map Φ_{X}^{k} for the case $k=1$, that is for the case of divisors.
Let $D \in Z^{1}(X)$ be a divisor, $[D]$ the cohomology class of $D, \mathcal{O}_{X}(D)$ the holomorphic line bundle corresponding to the divisor D, and α_{D} the isomorphism class of $\mathcal{O}_{X}(D)$.
By Lelong theorem ([22, Theorem 11.33]) $[D]=c_{1}\left(\mathcal{O}_{X}(D)\right)$, then $D \in \mathrm{Z}^{1}(X)_{\text {hom }}$, i.e., $[D]=0$ if and only if $c_{1}\left(\mathcal{O}_{X}(D)\right)=0$, i.e., $\alpha_{D} \in \operatorname{Pic}^{0}(X)=J^{1}(X)$ (Proposition 3.30). So, α_{D} is a well defined element in $J^{1}(X)$.
We also have the following proposition
Proposition 3.39. - $\Phi_{X}^{1}(D)=\alpha_{D}$.
Proof. - See [22, Proposition 12.7].
This proposition gives us the following characterization of the Abel- Jacobi map for the case $k=1$.
Publications mathématiques de Besançon - 2024

Definition 3.40 (Abel-Jacobi map for divisors). - Let $Z^{1}(X)_{\text {hom }}$ be the group of cycles of codimension 1 homologous to 0 (also called cohomologous to 0 in [22]), let $J^{1}(X)$ be the 1-th intermediate Jacobian. The Abel-Jacobi map is a morphism defined by

$$
\begin{array}{clc}
\Phi_{X}^{1}: \quad \mathrm{Z}^{1}(X)_{\mathrm{hom}} & \longrightarrow & J^{1}(X) \\
D & \longmapsto \Phi_{X}^{1}(D)=\alpha_{D}
\end{array}
$$

In what follows we prove that the Abel-Jacobi class map for divisors is an isomorphism.
Definition 3.41 (Alternative definition of rational equivalence). - Let D be a divisor on X. We say that $D \sim_{\text {rat }} 0$ if it is the divisor of a meromorphic function on X ([22, Definition 12.9]).
Lemma 3.42. - $\mathcal{O}_{X}(D)$ is trivial if and only if $D \sim_{\text {rat }} 0$
Proof. - $\mathcal{O}_{X}(D)$ is trivial then the meromorphic section σ_{D} of $\mathcal{O}_{X}(D)$ whose divisor is equal to D can be seen as a meromorphic function on X thanks to the trivialization, then by Definition $3.41 D \sim_{\text {rat }} 0$.
Reciprocally, if $D \sim_{\text {rat }} 0$ then by definition D is the divisor of a meromorphic function ϕ on X, then ϕ gives a everywhere non-zero section σ_{D} (whose divisor is D) of the line bundle $\mathcal{O}_{X}(D)$, so $\mathcal{O}_{X}(D)$ is trivial.
Lemma 3.43. - Let D be a divisor such that $D \sim_{\text {hom }} 0$ on X. Then $\Phi_{X}^{1}(D)=0$ if and only if $D \sim_{\text {rat }} 0$

Proof. - By Abel's theorem ([22, Corollary 12.8]) we have that $\Phi_{X}^{1}(D)=0$, i.e., $\alpha_{D}=0$ if and only if $\mathcal{O}_{X}(D)$ is trivial. By Lemma 3.42 this last condition is equivalent to $D \sim_{\text {rat }} 0$.

Then we get the following important theorem
Theorem 3.44. - $\mathrm{CH}^{1}(X)_{\mathrm{hom}} \xrightarrow{\sim} J^{1}(X)$.
Proof. - From Lemma 3.43 we have $\operatorname{Ker}\left(\Phi_{X}^{1}: Z^{1}(X)_{\text {hom }} \rightarrow J^{1}(X)\right)=Z^{1}(X)_{\text {rat }}$. Since Φ_{X}^{1} is surjective (see [22, §12.2.2]), and using the first isomorphism theorem of homomorphisms we have that $\mathrm{CH}^{1}(X)_{\mathrm{hom}}=\frac{\mathrm{Z}^{1}(X)_{\mathrm{hom}}}{\mathrm{Z}^{1}(X)_{\mathrm{rat}}} \xrightarrow{\sim} J^{1}(X)$ is an isomorphism.
Remark 3.45. - Since $J^{1}(X)=\operatorname{Pic}^{0}(X)$ we also have that $\mathrm{CH}^{1}(X)$ hom $\xrightarrow{\sim} \operatorname{Pic}^{0}(X)$.
As a easy consequence of the above theorem we get the following corollary which is very important for us.

Lemma 3.46 (Fact 1). - Let C be a smooth projective complex curve, let $J=J(C)$ be the Jacobian of the curve C. Then there exists an isomorphism alb ${ }_{C}: \mathrm{CH}_{0}(C)_{\operatorname{deg}=0} \rightarrow J$ between the Chow group $\mathrm{CH}_{0}(C)_{\mathrm{deg}=0}$ of 0 -cycles of degree zero on C and the Abelian variety J.

Proof. - Since C is in particular a compact Kähler manifold (of dimension 1) by Theorem 3.44 we have that the Abel-Jacobi (class) map alb $C_{C}: \mathrm{CH}^{1}(C)_{\mathrm{hom}}=\mathrm{CH}_{0}(C)_{\text {hom }} \xrightarrow{\sim} J$ is an isomorphism (see also Remark 3.38), by Fact 2 (see Lemma 2.49) $\mathrm{CH}_{0}(C)_{\text {hom }}=\mathrm{CH}_{0}(C)_{\mathrm{deg}=0}$, so we get that $a l b_{C}: \mathrm{CH}_{0}(C)_{\mathrm{deg}=0} \xrightarrow{\sim} J$ is an isomorphism. Finally, since C is smooth and projective $J=\operatorname{Pic}^{0}(C)$ is an abelian variety see Proposition 3.18.

Hence we can identify $\mathrm{CH}_{0}(C)_{\mathrm{deg}=0}$ with J by means of $a l b_{C}$.

Remark 3.47. - If X is a smooth projective variety of dimension 1 over an arbitrary algebraically closed field there exists a universal pair (A, φ), that is, an abelian variety $A=$ $\operatorname{Pic}^{0}(X)=J(X)=\operatorname{Alb}(X)$ and a regular homomorphism $\varphi: \mathrm{CH}_{0}(X)_{\operatorname{deg}=0}=\mathrm{A}_{0}(X) \rightarrow A$ satisfying the universal property (see [17, Notations]). Moreover, the regular homomorphism φ is an isomorphism, see [3] and [1, Remark 2].

The Albanese variety and the Albanese map. - In order to define the Albanese map we need to remember the following theorem due to Griffiths.

Theorem 3.48 (Griffiths' theorem). - Let X be a compact Kähler manifold, Y a connected manifold, $t_{0} \in Y$ a reference point, and $Z=\sum n_{i} Z_{i} \in Z^{k}(Y \times X)$ a cycle of codimension k with each Z_{i} smooth or flat and such that $\mathrm{pr}_{1}: Z_{i} \rightarrow Y$ is a submersion. Then the fibres $Z_{t}=\sum n_{i} Z_{i, t}$, where $Z_{i, t}:=\mathrm{pr}_{1}^{-1}(t) \subset X$, are all homologous in X, and the map

$$
\begin{aligned}
\phi: Y & \longrightarrow \\
t & \longmapsto J^{2 k-1}(X) \\
t & \longmapsto Z_{X}^{k}\left(Z_{t}-Z_{t_{0}}\right)
\end{aligned}
$$

is holomorphic (see [22, Theorem 12.4], see also [22, Remark 12.5]).
Griffiths' theorem applied to the following particular case: let X be a connected manifold, $Y=X, t_{0}=x_{0} \in X, Z=\Delta \in Z^{n}(X \times X)$, where $\Delta=\{(x, y) \in X \times X: x=y\}$ is the diagonal. Give us a holomorphic map

$$
\begin{aligned}
\text { alb }_{X}: X & \longrightarrow \\
& \longmapsto J_{X}^{2 n-1}(X) \\
x & \longmapsto \Phi^{2 n-1}\left(x-x_{0}\right) .
\end{aligned}
$$

Definition 3.49 (The Albanese map). - The map $a l b_{X}$ is called the Albanese map
Definition 3.50 (Albanese variety). - The complex torus $\operatorname{Alb}(X):=J^{2 n-1}(X)$ is called the Albanese variety of X.

Example 3.51. - If $\operatorname{dim}(X)=1$, that is, if X is a curve, then $\operatorname{Alb}(X)=J(X)$.
Property: the image $\operatorname{alb}_{X}(X)$ generates the torus $\operatorname{Alb}(X)$ as a group. More precisely, for sufficiently large r, the morphism

$$
\begin{array}{cccc}
\text { alb }_{X}^{r}: & X^{r} & \longrightarrow & \operatorname{Alb}(X) \\
& \left(x_{1}, \ldots, x_{r}\right) & \longmapsto & \sum_{i} \operatorname{alb}_{X}\left(x_{i}\right)
\end{array}
$$

is surjective. This property implies that if X is a projective variety then $\operatorname{Alb}(X)$ is an Abelian variety ([22, Corollary 12.12]).
There is another important characterization of the Albanese morphism:
Theorem 3.52. - For any holomorphic map $\psi: X \rightarrow T$ from X to a complex torus T such that $\psi\left(x_{0}\right)=0$, there exists a unique morphism of complex tori $f: \operatorname{Alb}(X) \rightarrow T$ such that $\psi=f \circ a l b_{X}$.

Remark 3.53. - The Abel-Jacobi (class) map $\mathrm{CH}_{0}(X)_{\text {hom }} \rightarrow \operatorname{Alb}(X)=J^{2 n-1}(X)$ (Proposition 3.37) is usually also denoted by $a l b_{X}$ and called the Albanese map, see [23, Theorem 10.11].

4. Lefschetz Pencils and The Monodromy Argument

We start this section with the definition of Lefschetz Pencils of hyperplane sections on an n dimensional smooth projective variety X, then we study the local description of the topology of a Lefschetz degeneration which applied to a Lefschetz pencil $\left(X_{t}\right)_{t \in \mathbb{P}^{1}}$ of hyperplane sections of X shows that the vanishing cohomology $H^{n-1}\left(X_{t}, \mathbb{Z}\right)_{\text {van }}$ is generated by vanishing cycles of a Lefschetz pencil passing through the smooth hyperplane section X_{t}.
In this section we also study the monodromy action on the cohomology of the fibres of a projective morphism needed to proof item b of Theorem 5.1. We begin with the definition of local systems, then we study the local monodromy for Lefschetz degenerations, which gives us the Picard-Lefschetz formula, next we study the monodromy action associated to the smooth universal hypersurface which gives us the irreducibility of the monodromy action (see Theorem 4.59). The main reference for this section is [23], see also [19].

4.1. Lefschetz Pencils. -

Definition 4.1 (Pencil of hypersurfaces on a variety). - Let X be a complex variety, \mathscr{L} a holomorphic line bundle on X and $|\mathscr{L}|:=\mathbb{P}\left(H^{0}(X, \mathscr{L})\right)$. A pencil of hypersurfaces on X is a projective line $L \cong \mathbb{P}^{1}$ in $|\mathscr{L}|$.

Remark 4.2. - (Another characterization of a pencil of hypersurfaces) Note that every element $t \in L$ of this pencil is a class of a nonzero and well defined up to a coefficient section σ_{t} of L. If $X_{t} \subset X$ denotes the hypersurface on X defined by the section σ_{t} we get a one to one correspondence between these hypersurfaces X_{t} and the points $t \in L$, we then write $\left(X_{t}\right)_{t \in L}$ for the pencil of hypersurfaces of X.

Assume that $X \subset \mathbb{P}^{N}$ is a projective subvariety of \mathbb{P}^{N} and $\mathscr{L}=\mathcal{O}_{X}(1)$. If the restriction $\operatorname{map} H^{0}\left(\mathbb{P}^{N}, \mathcal{O}_{\mathbb{P}^{N}}(1)\right) \rightarrow H^{0}\left(X, \mathcal{O}_{X}(1)\right)$ is an isomorphism, that is, $|\mathscr{L}|:=\mathbb{P}\left(H^{0}(X, \mathscr{L})\right) \cong$ $\mathbb{P}\left(H^{0}\left(\mathbb{P}^{N}, \mathcal{O}_{\mathbb{P}^{N}}(1)\right)\right)=\left(\mathbb{P}^{N}\right)^{*}$, where $\left(\mathbb{P}^{N}\right)^{*}$ is the dual projective space parametrising the hyperplanes of \mathbb{P}^{N}, we have the following definition of a pencil.

Definition 4.3 (Pencil). - A pencil in $|\mathscr{L}|$ is a line L in $\left(\mathbb{P}^{N}\right)^{*}$.
Definition 4.4 (Base locus of a pencil). - The base locus or axis of a pencil $\left(X_{t}\right)_{t \in L}$ is defined by $A=\bigcap_{t \in L} X_{t} \subset X$.

Remark 4.5. - Since $\sigma_{t}=\sigma_{0}+t \sigma_{\infty}$ for $t \in \mathbb{C} \subset \mathbb{P}^{1}$, clearly A is defined by the equations: $\sigma_{0}=\sigma_{\infty}=0$. So $A=\bigcap_{t \in L} X_{t}=X_{0} \cap X_{\infty}$ is a complete intersection of codimension 2 in X if the hypersurfaces X_{0} and X_{∞} have no common component.

Lefschetz pencil. -
Definition 4.6 (Lefschetz pencil). - A pencil $\left(X_{t}\right)_{t \in L}$ of hypersurfaces of X is called a Lefschetz pencil if it satisfies the following conditions:

1. The base locus A is smooth of codimension 2 in X. In particular, the hypersurfaces of the pencil are smooth along A.
2. Every hypersurface X_{t} has at most one ordinary double point as singularity.

In what follows we will give another characterization of Lefschetz pencils.
Let $X \subset \mathbb{P}^{N}$ be a variety contained in \mathbb{P}^{N}, and assume that X is not degenerate, i.e., the restriction map $H^{0}\left(\mathbb{P}^{N}, \mathcal{O}_{\mathbb{P}^{N}}(1)\right) \rightarrow H^{0}\left(X, \mathcal{O}_{X}(1)\right)$ is injective.
For every $t \in\left(\mathbb{P}^{N}\right)^{*}$ let H_{t} the hyperplane in \mathbb{P}^{N} corresponding to t and consider the algebraic subset defined by $Z=\left\{(x, t) \in X \times\left(\mathbb{P}^{N}\right)^{*}: X_{t}:=X \cap H_{t}\right.$ is singular at $\left.x\right\}$. It is known that Z is smooth and $\operatorname{dim}(Z)=N-1$, see [23, §2.1.1].

Definition 4.7 (The discriminant variety of $X /$ discriminant locus of $\left.\left(\mathbb{P}^{N}\right)^{*}\right)$. The image $\Delta_{X}=\mathrm{pr}_{2}(Z)$ of Z via the second projection is called the discriminant variety of X or discriminant locus of $\left(\mathbb{P}^{N}\right)^{*}$.

By definition Δ_{X} is the set of singular hyperplane sections of X. It is known that $\operatorname{dim}\left(\Delta_{X}\right) \leq$ $N-1$ and that $\operatorname{dim}\left(\Delta_{X}\right)=N-1$ if there exist hyperplane sections of X having an ordinary double point ([23, §2.1.1]).

Definition 4.8 (A special open subset of the discriminant locus). - The subset of Δ_{X} parametrizing hyperplanes H_{t} such that X_{t} has at most one ordinary double point as singularity is denoted by Δ_{X}^{0}.
Remark 4.9. - If $\operatorname{dim}\left(\Delta_{X}\right)=N-1$ then $\Delta_{X}^{0} \neq \emptyset$ and thus dense, since it is clearly a Zariski open set of Δ_{X}. Moreover, Δ_{X}^{0} is smooth since pr_{2} is an isomorphism over $\Delta_{X}^{0}([23$, p. 45]).

Then we have the following characterization of Lefschetz pencils
Proposition 4.10. - Let X be a smooth subvariety of \mathbb{P}^{N}. Then a pencil of hyperplane sections $\left(X_{t}\right)_{t \in L}$ is a Lefschetz pencil if and only if one of the following two conditions is satisfied.

1. $\operatorname{dim}\left(\Delta_{X}\right)=N-1$, i.e., the discriminant variety of X is a hypersurface, and the corresponding line $L \subset\left(\mathbb{P}^{N}\right)^{*}$ to this pencil meets the discriminant hypersurface Δ_{X} transversely in the open dense set Δ_{X}^{0}.
2. $\operatorname{dim}\left(\Delta_{X}\right) \leq N-2$ and the corresponding line $L \subset\left(\mathbb{P}^{N}\right)^{*}$ to this pencil does not meet Δ_{X}.

Proof. - See [23, Proposition 2.9].
Remark 4.11. - Note that if $p \in \mathbb{P}^{N}$ is such that $p \in A$ then it lies in every hyperplane of the pencil, and the hyperplanes of the pencil are exactly those containing the axis. Moreover, through any point $p \in \mathbb{P}^{N}$ such that $p \notin A$ there passes exactly one hyperplane in the pencil, see [15, Chapter 31].
Corollary 4.12. - If $X \subset \mathbb{P}^{N}$ is a smooth projective complex variety, then a generic pencil $\left(X_{t}\right)_{t \in L}$ of hyperplane sections of X is a Lefschetz pencil.
Proof. - See [23, Corollary 2.10].
Proposition 4.13. - If $X \subset \mathbb{P}^{N}$ is a smooth non-linear surface, then Δ_{X} is a hypersurface, that is, $\operatorname{dim}\left(\Delta_{X}\right)=N-1$.

Proof. - See [21, Example 7.5].
Publications mathématiques de Besançon - 2024

4.2. Local and Global Lefschetz Theory. -

Local Lefschetz theory. - In this section we study the topology of an ordinary singularity.
Definition 4.14 (Lefschetz degeneration map). - Let $B \subset \mathbb{C}^{n}$ be a ball of radius r centered at $0 \in \mathbb{C}^{n}, f$ the function on B defined by $f(z)=\sum_{i} z_{i}^{2}$, and $B_{t}:=f^{-1}(t)$ the fibre over t. The map f has values in the disk D of radius r^{2} and is such that the central fibre B_{0} has an ordinary double point at 0 as singularity, whereas the fibres B_{t} for t near 0 are smooth. The map $f: B \rightarrow D$ is called a Lefschetz degeneration.
For every point $t=|t| e^{i \theta} \in D^{*}\left(D^{*}=D-\{0\}\right)$ such that $|t| \leq r^{2}$, the fibre B_{t} contains the sphere S_{t}^{n-1} defined by

$$
S_{t}^{n-1}=\left\{z=\left(z_{1}, \ldots, z_{n}\right) \in B: z_{i}=\sqrt{|t|} e^{i \theta / 2} x_{i}, x_{i} \in \mathbb{R}, \sum_{1 \leq i \leq n} x_{i}^{2}=1\right\}
$$

Definition 4.15 (Vanishing sphere). - The sphere S_{t}^{n-1} contained in the fiber B_{t} is called a vanishing sphere of the family $\left(B_{t}\right)_{t \in D}$.

The name of the sphere S_{t}^{n-1} is due to the fact that when t tends to 0 (i.e. to the singular point) the sphere tends to contract to a point.
Remark 4.16. - The sphere S_{t}^{n-1} depends on the choice of coordinates and does not have any privileged orientation. However, its homology class $\delta \in H_{n-1}\left(B_{t}, \mathbb{Z}\right)$, defined by the choice of an orientation, is well defined up to sign and is a generator of $H_{n-1}\left(B_{t}, \mathbb{Z}\right)$.

Definition 4.17 (Vanishing cycle). - The homology class δ of the vanishing sphere S_{t}^{n-1} is called the vanishing cycle of the Lefschetz degeneration $f: B \rightarrow D$.

On the other hand, the set $B_{\leq|t|}=\{z \in B:|f(z)| \leq|t|\}$ contains the ball

$$
B_{t}^{n}=\left\{z=\left(z_{1}, \ldots, z_{n}\right) \in B: z_{i}=\sqrt{|t|} e^{i / 2 \theta} x_{i}, x_{i} \in \mathbb{R}, \sum_{1 \leq i \leq n} x_{i}^{2} \leq 1\right\}
$$

Definition 4.18 (Cone on the vanishing sphere). - The ball B_{t}^{n} contained in $B_{\leq|t|}$ is called the cone on the vanishing sphere S_{t}^{n-1}.

As an application of Morse theory we have
Proposition 4.19. - For D of small radius with respect to the radius of B, and $s \in D^{*}$, there exists a retraction by deformation $\left(H_{t}^{\prime}\right)_{t \in[0,1]}$ of $B_{D}:=f^{-1}(D)$ onto the union $B_{s} \cup B_{s}^{n}$ of the fiber B_{s} with the ball B_{s}^{n}. Moreover, this retraction by deformation can be chosen so as to preserve S_{D} and to be induced on S_{D} by a retraction $\left(R_{S, t}\right)_{t \in[0,1]}$ as above.
Proof. - See [23, Proposition 2.14].
A global version of the above proposition states the following. Let $f: X \rightarrow D$ be a proper holomorphic map from a n-dimensional complex variety X to a disk such that f a submersion over the punctured disk D^{*} and that f has a nondegenerate critical point x_{0} over $0 \in D$, that is, let f be a Lefschetz degeneration.

Theorem 4.20. - Then there exists a retraction by deformation of X into the union $X_{t} \bigcup_{S_{t}^{n-1}} B_{t}^{n}$ of X_{t} with a n-dimensional ball B_{t}^{n} which is glued to X_{t} along a vanishing sphere $S_{t}^{n-1} \subset X_{t}$, where $t \in D^{*}$.
Proof. - See [23, Theorem 2.16].
Corollary 4.21. - Let $i: X_{t} \hookrightarrow X_{D}, t \in D^{*}$, be the inclusion. Then the homomorphism $i_{*}: H_{k}\left(X_{t}, \mathbb{Z}\right) \rightarrow H_{k}\left(X_{D}, \mathbb{Z}\right)$ is an isomorphism for $k<n-1$, and is surjective for $k=n-1$. Moreover, the kernel of i_{*} is generated by the class of "the" vanishing sphere S_{t}^{n-1} of X_{t} for $k=n-1$.

Proof. - See [23, Corollary 2.17].
Global theory of Lefschetz. -
Definition 4.22 (Fibration of topological spaces). $-\phi: Y \rightarrow X$ is called a fibration of topological spaces if locally on X there exists a trivialisation of ϕ, i.e., a homeomorphism $Y_{U}:=\phi^{-1}(U) \cong Y_{t} \times U$ over X, where U is an open neighborhood of $t \in X$.

Example 4.23. - By Ehresmann's Theorem if X and Y are differentiable varieties and ϕ is submersive and proper, then ϕ is a fibration.
Let X be a compact complex variety of dimension n, and let $\left(X_{t}\right)_{t \in \mathbb{P}^{1}}$ be a Lefschetz pencil on X.
Consider the variety $\widetilde{X}=\left\{(x, t) \in X \times \mathbb{P}^{1}: x \in X_{t}\right\}$. Let $\tau=\left.\operatorname{pr}_{1}\right|_{\tilde{X}}: \widetilde{X} \rightarrow X$, where $\mathrm{pr}_{1}: X \times \mathbb{P}^{1} \rightarrow X$ is the first projection, and let $f=\left.\mathrm{pr}_{2}\right|_{\tilde{X}}: \widetilde{X} \rightarrow \mathbb{P}^{1}$, where $\mathrm{pr}_{2}: X \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ is the second projection.

- By definition of blowups it is clear that $\widetilde{X} \xrightarrow{\tau} X$ can be identified with the blowup of X along the base locus A of the pencil.
- Each hypersurface X_{t} of the Lefschetz pencil (hence of X) can be naturally identified with the fibre $f^{-1}(t) \subset \widetilde{X}$ of f.

Since $\left(X_{t}\right)_{t \in \mathbb{P}^{1}}$ is a Lefschetz pencil, the base locus A is smooth and thus \widetilde{X} is smooth, and since each fibre X_{t} of f has at most one ordinary double point as singularity we can in the neighborhood of each critical value of f, apply Theorem 4.20 as follows:

- Let $0_{i} \in \mathbb{P}^{1}$, with $i=1, \ldots, M$ be the critical values of f.

For each i, let D_{i} be a small disk of \mathbb{P}^{1} centered at 0_{i}, and let $\widetilde{X}_{D_{i}}:=f^{-1}\left(D_{i}\right)$. Then $\widetilde{X}_{D_{i}} \rightarrow D_{i}$ satisfies the property of Theorem 4.20 , so we have that $\tilde{X}_{D_{i}}$ retracts by deformation onto the union $X_{t_{i}} \bigcup_{S_{t_{i}}^{n-1}} B_{t_{i}}^{n}$ of $X_{t_{i}}$ with an n-dimensional ball $B_{t_{i}}^{n}$ glued to $X_{t_{i}}$ along a vanishing sphere $S_{t_{i}}^{n-1} \subset X_{t_{i}}$, where $t_{i} \in D_{i}^{*}$.

- Assume that ∞ is not a critical value of f.

Let $t \in \mathbb{C}=\mathbb{P}^{1}-\infty$ be a regular value, and $\gamma_{i}, i=1, \ldots, M$ be the paths in \mathbb{C} joining t to t_{i}, not passing through the critical values 0_{i} and meeting only at the point t. Then

- $\mathbb{C}=\mathbb{P}^{1}-\infty$ admits a retraction by deformation onto $\bigcup_{i=1}^{M} D_{i} \cup \gamma_{i}$ the union of the discs D_{i} with the paths γ_{i}.
- Since f is a proper fibration above $\mathbb{C} \backslash\left\{0_{1}, \ldots, 0_{M}\right\}$, by Ehresmann's theorem $\widetilde{X}-X_{\infty}$ admits a retraction by deformation onto $\bigcup_{i=1}^{M} \widetilde{X}_{\gamma_{i}} \cup \widetilde{X}_{D_{i}}$, where $\widetilde{X}_{\gamma_{i}}:=f^{-1}\left(\gamma_{i}\right)$.
- Finally, as f is a fibration above γ_{i}, each $\widetilde{X}_{\gamma_{i}}$ admits a trivialization $\widetilde{X}_{\gamma_{i}} \cong X_{t_{i}} \times \gamma_{i}$, above γ_{i}, and correspondingly, $\widetilde{X}_{\gamma_{i}}$ admits a retraction by deformation onto $X_{t_{i}}$. Moreover this trivialization also gives a diffeomorphism between $X_{t_{i}}$ and X_{t}.

So, we have prove the following theorem.
Theorem 4.24. - (Homotopy type of $\widetilde{X}-X_{\infty}$) The variety $\widetilde{X}-X_{\infty}$ has the homotopy type of the union of X_{t} with n-dimensional balls glued to X_{t} along $(n-1)$-dimensional spheres.
Proof. - See [23, Theorem 2.18].
Corollary 4.25. - For $t \in \mathbb{P}^{1}-\infty$ such that $\underset{\sim}{X}$ is smooth, the inclusion $i_{t}^{\prime}: X_{t} \hookrightarrow \widetilde{X}-X_{\infty}$ induces an isomorphism $i_{t *}^{\prime}: H_{k}\left(X_{t}, \mathbb{Z}\right) \rightarrow H_{k}\left(\widetilde{X}-X_{\infty}, \mathbb{Z}\right)$, for $k<n-1$. For $k=n-1$, $i_{t *}^{\prime}$ is surjective and the kernel of $i_{t *}^{\prime}$ is generated by the classes of vanishing spheres.

Proof. - See [23, Corollary 2.20].
Remark 4.26. - Note that given a pair (X, Y), where Y is a smooth hyperplane section of $X \subset \mathbb{P}^{N}$ there exists a Lefschetz pencil $\left(X_{t}\right)_{t \in \mathbb{P}^{1}}$ of hyperplane sections of X, of which Y is one member $X_{t}([23, \S 2.3 .2])$.

Vanishing cohomology and primitive cohomology. - Let Y be a compact Kähler variety of dimension $m,[\omega] \in H^{2}(Y, \mathbb{R})$ be a Kähler class. Then we have the operator: $L=[\omega] \cup$: $H^{k}(Y, \mathbb{R}) \rightarrow H^{k+2}(Y, \mathbb{R})$, called the Lefschetz operator.

Definition 4.27 (Primitive cohomology). - The primitive cohomology is defined by

$$
H^{k}(Y, \mathbb{R})_{\text {prim }}:=\operatorname{Ker}\left(L^{m+1-k}: H^{k}(Y, \mathbb{R}) \longrightarrow H^{2(m+1)-k}(Y, \mathbb{R})\right)
$$

Remark 4.28. - For $k=m$ we have: $H^{m}(Y, \mathbb{R})_{\text {prim }}:=\operatorname{Ker}\left(L: H^{m}(Y, \mathbb{R}) \rightarrow H^{m+2}(Y, \mathbb{R})\right)$.
From now on suppose that $Y \stackrel{j}{\hookrightarrow} X$ is a hyperplane section of a projective variety X of dimension n (hence $m=n-1$). Then we can take $[\omega]=c_{1}\left(\mathcal{O}_{Y}(1)\right)=h_{Y}$, and the equality: $j^{*} \circ j_{*}=h_{Y} \cup: H^{k}(Y, \mathbb{Z}) \rightarrow H^{k+2}(Y, \mathbb{Z})$ says that the corresponding Lefschetz operator of $[\omega]$ satisfies: $L=j^{*} \circ j_{*}: H^{k}(Y, \mathbb{R}) \xrightarrow{j_{*}} H^{k+2}(X, \mathbb{R}) \xrightarrow{j^{*}} H^{k+2}(Y, \mathbb{R})$.

Definition 4.29 (Vanishing cohomology). - For every coefficient ring R, the vanishing cohomology is defined by

$$
H^{k}(Y, R)_{\mathrm{van}}=\operatorname{Ker}\left(j_{*}: H^{k}(Y, R) \longrightarrow H^{k+2}(X, R)\right)
$$

For the case $k=n-1=\operatorname{dim}(Y)$, the following is an important property of the vanishing cohomology
Lemma 4.30. - The vanishing cohomology $H^{n-1}(Y, \mathbb{Z})_{\text {van }}$ is generated by the classes of vanishing spheres of a Lefschetz pencil passing through Y.

Proof. - See [23, Lemma 2.26].
Lemma 4.31. - The vanishing cohomology $H^{n-1}(Y, \mathbb{Z})_{\text {van }}$ is a Hodge substructure.

Proof. - By Proposition $3.26 j_{*}$ is a morphism of Hodge structures and by Remark 3.22 $\operatorname{ker}\left(j_{*}\right)=H^{n-1}(Y, \mathbb{Z})_{\text {van }}$ has the structure of Hodge structure.
Proposition 4.32 (Comparison between primitive and vanishing cohomology). -

1. There is a decomposition as an orthogonal direct sum (relative to the intersection form in $\left.H^{n-1}(Y, \mathbb{Q})\right): H^{n-1}(Y, \mathbb{Q})=H^{n-1}(Y, \mathbb{Q})_{\text {van }} \oplus j^{*} H^{n-1}(X, \mathbb{Q})$.
2. Similarly, there is a decomposition as an orthogonal direct sum: $H^{n-1}(Y, \mathbb{Q})_{\text {prim }}=$ $H^{n-1}(Y, \mathbb{Q})_{\text {van }} \oplus j^{*} H^{n-1}(X, \mathbb{Q})_{\text {prim }}$.

Proof. - See [23, Lemma 2.27].

4.3. Monodromy of Lefschetz Pencils. -

Local systems on topological spaces. - Let X be a topological space and let A be some commutative ring with a unit.
Definition 4.33 (Local system of A-modules on X). - A local system of A-modules on X consists of the following data: for each $t \in X$ an A-module G_{t} and for any two points $t, t^{\prime} \in X$ a collection of isomorphisms $\rho([\gamma]): G_{t} \xrightarrow{\sim} G_{t^{\prime}}$, one for each homotopy class $[\gamma]$ of paths from t to t^{\prime}. A local system with fibres G_{t} is usually denoted by \mathcal{G}.
Definition 4.34 (Constant local system). - The constant local system with fibre G is denoted by G_{X}.
Definition 4.35 (Monodromy representation associated to a local system). Let (X, t) be a pointed path connected (i.e., 0-connected) topological space, the collection $\left\{\rho([\gamma]): G_{t} \rightarrow G_{t} \mid \gamma\right.$ a loop at $\left.t\right\}$ defines the associated monodromy representation

$$
\begin{array}{clc}
\rho: \pi_{1}(X, t) & \longrightarrow & \operatorname{GL}\left(G_{t}\right) \\
{[\gamma]} & \longmapsto & \rho([\gamma])
\end{array}
$$

Remark 4.36 (In a locally simply connected space local systems are locally constant local systems). - Let \mathcal{G} a local system on the topological space X. If X is a locally simply connected space, i.e., locally 1-connected, then it admits a covering $\left\{U_{i}\right\}_{i \in I}$ by simply connected open subsets therefore for any two points $t, t^{\prime} \in U_{i}$ there is a unique homotopy class $[\gamma]$ of paths from t to t^{\prime} inside U_{i}, so there is a unique isomorphism $f_{t, t^{\prime}}: G_{t} \xrightarrow{\sim} G_{t^{\prime}}$ defined by any path connecting t and t^{\prime} in U_{i}. This gives a canonical trivialization of the local system \mathcal{G} above U_{i}, say $\phi_{i}: \mathcal{G} \mid U_{i} \xrightarrow{\sim} G_{U_{i}}$.
Let X be a path connected and locally simply connected space. Then we have the following property
Lemma 4.37. - Let X be a path connected and locally simply connected space. Then there is a one to one correspondence between locally constant sheaves of A-modules and local systems of A-modules on X.

Proof. - See [19, Lemma B.34.]. By Remark 4.36 note that the one to one correspondence is actually with locally constant local systems of A-modules on X.
In a locally connected topological space we have the following alternative definition of a local systems, see [23, §3.1.1].
Publications mathématiques de Besançon - 2024

Definition 4.38 (Local system of stalk G). - Let X be a locally connected topological space, and let G be an abelian group. A local system of stalk G is a sheaf which is locally isomorphic to the constant sheaf of stalk G.

For another definition of constant sheaf see [22, Example 4.5].
Definition 4.39 (Local system of A-modules of stalk G). - Let G be an A-module. A local system of A-modules of stalk G is a sheaf of A-modules which is locally isomorphic, as a sheaf of A-modules, to the constant sheaf of stalk G.

The following corollary gives a relation of local systems and representations.
Corollary 4.40. - If X is arcwise connected and locally simply connected and $x \in X$, we have a natural bijection between the set of isomorphism classes of local systems of stalk G, and the set of representations $\pi_{1}(X, x) \rightarrow \operatorname{Aut}(G)$, modulo the action of $\operatorname{Aut}(G)$ by conjugation.

Proof. - See [23, Proposition 3.0].
Definition 4.41 (Monodromy representation). - The representation (of $\pi_{1}(X, x)$)

$$
\rho: \pi_{1}(X, x) \longrightarrow \operatorname{Aut}\left(\mathcal{G}_{x}\right)=\operatorname{Aut}(G)
$$

corresponding to a local system is called the monodromy representation.
Now we study local systems associated to a fibration.
Let $\phi: Y \rightarrow X$ be a fibration of topological spaces (see Definition 4.22) and assume that X is locally contractible. Then for sufficiently small U, the open sets $Y_{U}=\phi^{-1}(U)$ have the same homotopy type as the fibre $Y_{u}=\phi^{-1}(u)$ with $u \in U$. Therefore, using the invariance under homotopy of U, one deduces that for every ring of coefficients A, the sheaves $R^{k} \phi_{*} A$ are locally constant sheaves. Recall that $R^{k} \phi_{*}$ is the right k-th derived functor of the functor ϕ_{*} : Category of sheaves on $Y \rightarrow$ Category of sheaves on X.

Proposition 4.42. - The monodromy representation $\rho: \pi_{1}(X, x) \rightarrow \operatorname{Aut}\left(H^{k}\left(Y_{x}, A\right)\right)$ of $\pi_{1}(X, x)$ on the stalk $H^{k}\left(Y_{x}, A\right)=\left(R^{k} \phi_{*} A\right)_{x}$ of the local system $R^{k} \phi_{*} A$ is induced by homeomorphisms of the fibre Y_{x}.

Proof. - See [23, p. 74].
In what follows we study some restrictions that Hodge theory imposes on the monodromy representation.

Definition 4.43 (Projective morphism). - A morphism $\phi: Y \rightarrow X$ of complex varieties is called projective if there exists a holomorphic immersion $i: Y \hookrightarrow X \times \mathbb{P}^{N}$ such that $\mathrm{pr}_{1} \circ i=\phi$.

Let $\phi: Y \rightarrow X$ be a holomorphic, submersive and projective morphism of complex varieties. Then we have a monodromy representation $\rho: \pi_{1}(X, x) \rightarrow \operatorname{Aut}\left(H^{k}\left(Y_{x}, \mathbb{Z}\right)\right)$, as above for every k.
By Hogde theory we know that every group $H^{k}\left(Y_{x}, \mathbb{Z}\right)$ is equipped with a Hodge structure (see Example 3.5).
The first restriction imposed by Hodge theory on ρ is

Proposition 4.44. - $H^{k}\left(Y_{x}, \mathbb{Z}\right)^{\rho}:=\left\{\alpha \in H^{k}\left(Y_{x}, \mathbb{Z}\right) \mid \rho(\gamma)(\alpha)=\alpha, \forall \gamma \in \pi_{1}(X, x)\right\}$, the space of invariants under ρ, is a Hodge substructure $H^{k}\left(Y_{x}, \mathbb{Z}\right)$ if X is quasi-projective.

Proof. - See [23, Proposition 3.14].
Another consequence of Hodge theory concerns the local monodromy called the quasiunipotence theorem.

Theorem 4.45 (Quasi-unipotence theorem). - Let X be a punctured disk D^{*}, so that $\pi_{1}(X, x)=\mathbb{Z}$ and the monodromy group $\operatorname{im}(\rho) \subset \operatorname{Aut}\left(H^{k}\left(Y_{x}, \mathbb{Z}\right)\right)$ is generated by a single element T. Then T is quasi-unipotent, i.e., there exists integers N and M such that $\left(T^{N}-1\right)^{M}=0$. In fact, we can even take $M \leq k+1$.

Proof. - See [23, Proposition 3.15].
The Picard-Lefschetz formula for a Lefschetz degeneration. - In a wider context we have the following definition of a Lefschetz degeneration (Definition 4.14).
Definition 4.46 (Lefschetz degeneration). - Let X be a smooth n-dimensional complex variety. The map $f: X \rightarrow D$ is called a Lefschetz degeneration if f is proper with non-zero differential over the punctured disc D^{*}, and such that the fibre X_{0} has an ordinary double point as its unique singularity.

Let X be a smooth n-dimensional complex variety and $f: X \rightarrow D$ a Lefschetz degeneration. Let $t \in D^{*}$. Since in this case $\pi_{1}\left(D^{*}, t\right)=\mathbb{Z}$, the monodromy representation ρ : $\pi_{1}\left(D^{*}, t\right) \rightarrow \operatorname{Aut}\left(H^{n-1}\left(X_{t}, \mathbb{Z}\right)\right)$ on the cohomology of the fibre $H^{n-1}\left(X_{t}, \mathbb{Z}\right)$ is determined by $T \in \operatorname{Aut}\left(H^{n-1}\left(X_{t}, \mathbb{Z}\right)\right)$, where T denotes the image via ρ of the generator of $\pi_{1}\left(D^{*}, t\right)$.
Let $\delta \in H^{n-1}\left(X_{t}, \mathbb{Z}\right)$ be the cohomology class of the sphere $S_{t}^{n-1} \subset X_{t}$ defined by an orientation, and recall that δ is a generator of $\operatorname{Ker}\left(H^{n-1}\left(X_{t}, \mathbb{Z}\right) \cong H_{n-1}\left(X_{t}, \mathbb{Z}\right) \rightarrow H_{n-1}(X, \mathbb{Z})\right)$, (see Corollary 4.21).
Recall also that the fiber X_{t} is a real oriented ($2 n-2$)-dimensional variety, so we have the intersection form $\langle\cdot, \cdot\rangle$ on $H^{n-1}\left(X_{t}, \mathbb{Z}\right)$.
Then we have the following important theorem
Theorem 4.47 (Picard-Lefschetz Theorem). - For every $\alpha \in H^{n-1}\left(X_{t}, \mathbb{Z}\right)$ we have: $T(\alpha)=\alpha+\epsilon_{n}\langle\alpha, \delta\rangle \delta$, where $\epsilon_{n}= \pm 1$ according to the value of n.

Proof. - See [23, Theorem 3.16].
Monodromy action associated to the smooth universal hypersurface and Zariski's theorem. -
Definition 4.48 (Family of projective varieties \mathbb{P}^{N}). - Let T be a variety. A family of projective varieties in the projective space \mathbb{P}^{N} with base T is a closed subvariety \mathscr{X} of the product $\mathbb{P}^{N} \times T$. The fibers $X_{t}=p_{2}^{-1}(t)$ over points $t \in T$ are called the members or elements of the family; the variety \mathscr{X} is called the total space and the family is said to be parametrized by T.
Example 4.49 (The universal family). - For any closed point $t \in \mathbb{P}^{N *}$ let H_{t} be the corresponding hyperplane in \mathbb{P}^{N}. The subset of $\mathbb{P}^{N} \times \mathbb{P}^{N *}$ defined by

$$
\mathscr{H}=\left\{(x, t) \in \mathbb{P}^{N} \times \mathbb{P}^{N *}: x \in H_{t}\right\}
$$

Publications mathématiques de Besançon - 2024
is a subvariety of $\mathbb{P}^{N} \times \mathbb{P}^{N *}$. Since the fibers over $\mathbb{P}^{N *}$, via $p_{2}: \mathscr{H} \rightarrow \mathbb{P}^{N *}$, are all hyperplanes in \mathbb{P}^{N} we think of \mathscr{H} as the family of hyperplanes in \mathbb{P}^{N} parametrized by $\mathbb{P}^{N *}$. Needless to say that the situation is symmetric, so we may also view \mathscr{H}, via $p_{1}: \mathscr{H} \rightarrow \mathbb{P}^{N}$, as the family of all hyperplanes in $\mathbb{P}^{N *}$ parameterized by \mathbb{P}^{N}. \mathscr{H} is called the universal family (see $[9$, Lecture 4]).

Remark 4.50. - The adjective universal of \mathscr{H} is due to the fact that if $\mathscr{X}_{T} \subset \mathbb{P}^{N} \times T$ is any flat family of hyperplanes (parametrized by T) then there is a unique regular map $T \rightarrow \mathbb{P}^{N *}$ such that \mathscr{X}_{T} is the fiber product $T \times_{\mathbb{P}^{N *}} \mathscr{H}$.

Example 4.51 (Universal hyperplane section). - Let $X \subset \mathbb{P}^{N}$ be a projective variety, \mathscr{H} the universal hyperplane, and $p_{1}: \mathscr{H} \rightarrow \mathbb{P}^{d}$ is the projection on the first factor. Set

$$
\mathscr{C}=\left\{(x, t) \in \mathscr{H}: x \in H_{t} \cap X\right\}=p_{1}^{-1}(X)
$$

By the second description \mathscr{C} is a subvariety of $X \times \mathbb{P}^{d *}$. Let f be the composition of the closed embedding $\mathscr{C} \hookrightarrow \mathscr{H}$ and $p_{2}: \mathscr{H} \rightarrow \mathbb{P}^{d *}$. Since the fibers over $\mathbb{P}^{N *}$, via f, are all hyperplane sections of X we think of \mathscr{C} as the family of hyperplane sections of X parametrized by $\mathbb{P}^{N *}$. This family is called the universal hyperplane section of X, see [9, Lecture 4].

Let $X \subset \mathbb{P}^{N}$ be a smooth projective connected non-degenerate variety of dimension n. Let $\Delta_{X}=\operatorname{pr}_{2}(Z) \subset\left(\mathbb{P}^{N}\right)^{*}$ be the discriminant variety of X, i.e., the set of singular hyperplane sections of X. An important property of Δ_{X} is that it is irreducible since it is the image in $\left(\mathbb{P}^{N}\right)^{*}$ of the smooth irreducible variety Z (see Definition 4.7). Let $U:=\left(\mathbb{P}^{N}\right)^{*} \backslash \Delta_{X}$ be complement of Δ_{X}.

Definition 4.52 (Smooth universal hyperplane section). - Set

$$
\mathscr{C}_{U}=\left\{(x, t) \in X \times U: x \in X_{t}=X \cap H_{t}\right\}
$$

and $f_{U}: \mathscr{C}_{U} \rightarrow U$. Since the fibers over U are smooth hyperplane sections of X we think of \mathscr{C}_{U} as the family of smooth hyperplane sections of X parametrized by U. This family is called the smooth universal hyperplane section of X. Note that by definition of U, f_{U} is a submersion.

Now in the following remark we recall an important fact about Lefschetz pencils of hyperplane sections of X.

Remark 4.53. - Let $L \subset \mathbb{P}^{N *}$ be a Lefschetz pencil through $t \in U$, and recall that Δ_{X}^{0} is the open dense subset of Δ_{X} parametrizing hyperplane sections X_{t} having exactly one ordinary double point (see also [13, §1.5]).
Case 1. If $\operatorname{dim}\left(\Delta_{X}\right) \leq N-2$, then the Lefschetz pencil L does not meet Δ_{X} at all (see Proposition 4.10). In this case $\pi_{1}(U, t)=1$, so there is no monodromy action associated to the fibration f_{U}, see $[23, \S 3.2 .2]$.
Case 2. If $\operatorname{dim}\left(\Delta_{X}\right)=N-1$, then the Lefschetz pencil L meets Δ_{X} transversely in its smooth locus Δ_{X}^{0} (see Proposition 4.10).

In the second case, Zariski's theorem shows that the monodromy representation $\rho: \pi_{1}(U, t) \rightarrow$ Aut $\left(H^{k}\left(X_{t}, \mathbb{Z}\right)\right)$ can be computed by restricting to a Lefschetz pencil.

Theorem 4.54 (Zariski's theorem). - Let $\mathcal{Y} \subset \mathbb{P}^{r}$ be a hypersurface, and let $U=\mathbb{P}^{r} \backslash \mathcal{Y}$ be its complement. Then for $t \in U$ and for every projective line $L \subset \mathbb{P}^{r}$ passing through t which meets \mathcal{Y} transversally in its smooth locus, the map $\pi_{1}(L-L \cap \mathcal{Y}, t) \rightarrow \pi_{1}(U, t)$ is surjective.
Proof. - See [23, Theorem 3.22].
Next we prove that if we are in the second case of the above remark, the vanishing cycles are conjugate under the monodromy action.
Assume that $\operatorname{dim}\left(\Delta_{X}\right)=N-1$, i.e., Δ_{X} is a hypersurface. Fix any $t \in U$, then we have the monodromy representation $\rho: \pi_{1}(U, t) \rightarrow \operatorname{Aut}\left(H^{n-1}\left(X_{t}, \mathbb{Z}\right)\right)$, associated to the fibration f_{U}. Moreover, for every $y \in \Delta_{X}^{0}$, let $y^{\prime} \in U$ be near y, contained in a disk D_{y} which meets Δ_{X}^{0} transversally at y, and such that $D_{y} \backslash\{y\} \subset U$. Then we have a vanishing cycle (of the Lefschetz degeneration $X_{D_{y}} \rightarrow D_{y}$ obtained by restricting f_{U} to $\left.X_{D_{y}}=f_{U}^{-1}\left(D_{y}\right)\right)$

$$
\delta_{y} \in H^{n-1}\left(X_{y^{\prime}}, \mathbb{Z}\right)=H_{n-1}\left(X_{y^{\prime}}, \mathbb{Z}\right), \text { where } X_{y^{\prime}}:=f_{U}^{-1}\left(y^{\prime}\right)
$$

i.e., the homology class of the sphere $S_{y^{\prime}}^{n-1} \subset X_{y^{\prime}}$ which is well defined up to sign as a generator of the kernel of the map $H_{n-1}\left(X_{y^{\prime}}, \mathbb{Z}\right) \rightarrow H_{n-1}\left(X_{D_{y}}, \mathbb{Z}\right)$, see Corollary 4.25.
Now choose a path γ from t to y^{\prime} contained in U; then, by trivialising the fibration f_{U} over γ, we can construct a diffeomorphism $\psi: X_{y^{\prime}} \cong X_{t}$, well-defined up to homotopy. Thus, we have a vanishing cycle $\delta_{\gamma}=\psi_{*}\left(\delta_{y}\right) \in H_{n-1}\left(X_{t}, \mathbb{Z}\right)=H^{n-1}\left(X_{t}, \mathbb{Z}\right)$, where $\psi_{*}: H_{n-1}\left(X_{y^{\prime}}, \mathbb{Z}\right) \rightarrow$ $H_{n-1}\left(X_{t}, \mathbb{Z}\right)$.
Then thanks to the fact that Δ_{X} is irreducible we obtain the following result
Proposition 4.55. - All the vanishing cycles δ_{γ} (one for each $y \in \Delta_{X}^{0}$) constructed above (and defined up to sign) are conjugate (up to sign) under the monodromy action ρ.

Proof. - See [23, Proposition 3.23].
Corollary 4.56. - Let $\left(X_{t}\right)_{t \in \mathbb{P}^{1}}$ be a Lefschetz pencil of hyperplane sections of $X, 0_{i}$, $i=1, \ldots, M$ the critical values, and $t \in \mathbb{P}^{1}$ a regular value. Then all the vanishing cycles $\delta_{i} \in H^{n-1}\left(X_{t}, \mathbb{Z}\right)$ of the pencil are conjugate under the monodromy action of $\rho: \pi_{1}\left(\mathbb{P}^{1} \backslash\right.$ $\left.\left\{0_{1}, \ldots, 0_{M}\right\}, t\right) \rightarrow \operatorname{Aut}\left(H^{n-1}\left(X_{t}, \mathbb{Z}\right)\right)$.

Proof. - It follows from Theorem 4.54 and the proposition above.
The following proposition tell us the vanishing cohomology of a smooth hyperplane section is stable under the monodromy action associated to f_{U}.

Proposition 4.57. - Let X_{t} be a smooth hyperplane section of X. Then the monodromy action $\rho: \pi_{1}(U, t) \rightarrow \operatorname{Aut}\left(H^{n-1}\left(X_{t}, \mathbb{Q}\right)\right)$, associated to the fibration f_{U}, leaves $H^{n-1}\left(X_{t}, \mathbb{Q}\right)_{\text {van }}$ stable.

Proof. - See [23, p. 88].
Definition 4.58 (Irreducible action). - The action of a group G on a vector space E is said to be irreducible if every vector subspace $F \subset E$ stable under G is equal to $\{0\}$ or E.
The following theorem gives the irreducibility of the monodromy representation for smooth hyperplane sections X_{t} of X, that is, that there is no non-trivial local subsystem of the local system with stalk $H^{n-1}\left(X_{t}, \mathbb{Q}\right)_{\text {van }}$.
Publications mathématiques de Besançon - 2024

Theorem 4.59. - Let $\left(X_{t}\right)_{t \in \mathbb{P}^{1}}$ be a Lefschetz pencil of hyperplane sections of $X, 0_{i}, i=$ $1, \ldots, M$ the critical values, and $t \in \mathbb{P}^{1}$ a regular value. Then the monodromy action $\rho:$ $\pi_{1}(U, t) \rightarrow \operatorname{Aut}\left(H^{n-1}\left(X_{t}, \mathbb{Q}\right)_{\text {van }}\right)$ is irreducible.

Proof. - See [23, Theorem 3.27].

5. The Gysin Kernel

In this section we present and prove the main result of the paper called the theorem on the Gysin kernel.
5.1. A theorem on the Gysin kernel. - Let S be a connected smooth projective surface over \mathbb{C}, D a very ample divisor on S and $\mathcal{O}_{S}(D)$ its corresponding very ample invertible sheaf on S. Let $\Sigma=|D|=\left|\mathcal{O}_{S}(D)\right|$ be the complete linear system of D on $S, d=\operatorname{dim}(\Sigma)$, and $\phi_{\Sigma}: S \hookrightarrow \mathbb{P}^{d}$ the closed embedding of S on \mathbb{P}^{d}, induced by Σ (see [11, II, Section 7$]$).
Let $\mathbb{P}^{d *}$ be the dual projective space of \mathbb{P}^{d} parametrizing hyperplanes in \mathbb{P}^{d} and let $\bar{\eta}$ be its geometric generic point. Recall that by definition the linear system Σ can be identified with $\mathbb{P}^{d *}$.
For any closed point $t \in \Sigma=\mathbb{P}^{d *}$, let H_{t} be the corresponding hyperplane in $\mathbb{P}^{d}, C_{t}=H_{t} \cap S$ the corresponding hyperplane section of S, and $r_{t}: C_{t} \hookrightarrow S$ the closed embedding of the curve C_{t} into S.
Let $\Delta_{S}=\left\{t \in \Sigma: C_{t}\right.$ is singular $\}$ be the subset in Σ parametrizing singular hyperplane sections of S and called the discriminant variety of S also called the discriminant locus of Σ (see Definition 4.7).
Let $U=\Sigma \backslash \Delta_{S}=\left\{t \in \Sigma: C_{t}\right.$ is smooth $\}$ be the complement of Δ_{S} parametrizing smooth hyperplane sections of S.
For any closed point $t \in U$, let $r_{t *}: H^{1}\left(C_{t}, \mathbb{Z}\right) \rightarrow H^{3}(S, \mathbb{Z})$ be the Gysin homomorphism on cohomology groups induced by r_{t} (see Definition 3.25). Recall that $H^{1}\left(C_{t}, \mathbb{Z}\right)$ and $H^{3}(S, \mathbb{Z})$ carries a weight 1 and 3 Hodge structure respectively (see Example 3.5) and that $r_{t *}$ is a morphism of Hodge structures of bidegree $(1,1)$ (see Proposition 3.26). Let $H^{1}\left(C_{t}, \mathbb{Z}\right)_{\text {van }}$ be the kernel of the above Gysin homomorphism $r_{t *}$, it is called the vanishing cohomology (see Definition 4.29) and it carries a Hodge structure induced by the morphism of Hodge structures $r_{t *}$ (see Lemma 4.31).
For any closed point $t \in U$, let $J_{t}=J\left(C_{t}\right)$ be the Jacobian of the curve C_{t}. Recall that J_{t} is the complex torus associated to the Hodge structure of weight 1 on $H^{1}\left(C_{t}, \mathbb{Z}\right.$) (see Proposition 3.30) and since C_{t} is smooth and projective it is an Abelian variety (see Proposition 3.31). Let B_{t} be the abelian subvariety of the abelian variety J_{t} corresponding to the Hodge substructure on $H^{1}\left(C_{t}, \mathbb{Z}\right)_{\text {van }}$.
For any closed point $t \in U$, let $r_{t *}: \mathrm{CH}_{0}\left(C_{t}\right)_{\operatorname{deg}=0} \rightarrow \mathrm{CH}_{0}(S)_{\mathrm{deg}=0}$ be the Gysin homomorphism on the Chow groups of 0-cycles of degree zero of C_{t} and S respectively (see Definition 2.15), induced by r_{t} (see Definition 2.11), whose kernel $G_{t}=\operatorname{Ker}\left(r_{t *}\right)$ will be called the Gysin kernel associated to the hyperplane section C_{t}.

Theorem 5.1 (A theorem on the Gysin kernel). - Let $S, \Delta_{S}, U, \bar{\eta}, G_{t}, B_{t}$ and J_{t} be as above. Then
a. For every $t \in U$, there is an abelian subvariety A_{t} of $B_{t} \subset J_{t}$ such that

$$
G_{t}=\bigcup_{\text {countable }} \text { translates of } A_{t}
$$

b. For very general $t \in U$ either, $A_{t}=0$ or $A_{t}=B_{t}$.

For the above we mean:
There exits a c-open subset $U_{0} \subset U$ such that either $A_{\bar{\eta}}=0$, in which case $A_{t}=0$ for all $t \in U_{0}$, or $A_{\bar{\eta}}=B_{\bar{\eta}}$, in which case $A_{t}=B_{t}$ for all $t \in U_{0}$.

Remark 5.2. - In item b note that if $A_{t}=0$ then it follows immediately by item a that G_{t} is countable and if $A_{t}=B_{t}$ and then it follows immediately by item a that G_{t} is a countable union of translates of B_{t}.
Proof of item a of Theorem 5.1. - Recall that $U=\Sigma \backslash \Delta_{S}$ is the open subset of $\Sigma=\mathbb{P}^{d *}$ parametrizing smooth hyperplane sections of S.
Let $t \in U=\Sigma \backslash \Delta$ be any (closed) point in U, so the corresponding section C_{t} is a smooth (hence connected, see [8]) curve of S and $r_{t}: C_{t} \hookrightarrow S$ is the closed embedding of the smooth connected curve C_{t} into S.
For each natural number d, let $\operatorname{Sym}^{d}\left(C_{t}\right)$ be the d-th symmetric product of the curve C_{t}, $\operatorname{Sym}^{d}(S)$ the d-th symmetric product of the surface S (see Definition 2.21), Sym $^{d}\left(r_{t}\right)$: $\operatorname{Sym}^{d}\left(C_{t}\right) \rightarrow \operatorname{Sym}^{d}(S)$ the morphism from the d-th symmetric product of the curve C_{t} to the d-th symmetric product of the surface S, induced by the closed embedding $r_{t}: C_{t} \hookrightarrow S$, and

$$
\operatorname{Sym}^{d, d}\left(r_{t}\right): \operatorname{Sym}^{d, d}\left(C_{t}\right)=\operatorname{Sym}^{d}\left(C_{t}\right) \times \operatorname{Sym}^{d}\left(C_{t}\right) \longrightarrow \operatorname{Sym}^{d, d}(S)=\operatorname{Sym}^{d}(S) \times \operatorname{Sym}^{d}(S)
$$

We obtain the following commutative diagram

where $\theta_{d}^{C_{t}}$ and θ_{d}^{S} are the set-theoretic maps of Definition 2.22 (see also Remark 2.23), $r_{t *}$ is the Gysin homomorphism on Chow groups of 0 -cycles of degree 0 induced by r_{t}.
Now recall that by Lemma 3.46 (Fact 1) and Lemma 2.49 (Fact 2) there exists an isomorphism $\operatorname{alb}_{C_{t}}: \mathrm{CH}_{0}\left(C_{t}\right)_{\mathrm{deg}=0} \rightarrow J_{t}=: \mathrm{Alb}\left(C_{t}\right)$ called the Albanese map. Here $\operatorname{Alb}\left(C_{t}\right)$ is the Albanese variety of C_{t}. Then, by Definition $2.31, \mathrm{CH}_{0}\left(C_{t}\right)_{\mathrm{deg}=0}$ is representable, or equivalently $\theta_{d}^{C_{t}}$: Sym $^{d, d}\left(C_{t}\right) \rightarrow \mathrm{CH}_{0}\left(C_{t}\right)_{\mathrm{deg}=0}$ is surjective for sufficiently large d, by Definition 2.30. This implies that the Gysin kernel is of the form:

$$
G_{t}=\theta_{d}^{C_{t}}\left[\left(\theta_{d}^{S} \circ \operatorname{Sym}^{d, d}\left(r_{t}\right)\right)^{-1}(0)\right]
$$

Indeed, by the commutativity of the diagram (1) we have

$$
\left(r_{t *} \circ \theta_{d}^{C_{t}}\right)^{-1}(0)=\left(\theta_{d}^{S} \circ \operatorname{Sym}^{d, d}\left(r_{t}\right)\right)^{-1}(0)
$$

then $\theta_{d}^{C_{t}}\left[\left(r_{t *} \circ \theta_{d}^{C_{t}}\right)^{-1}(0)\right]=\theta_{d}^{C_{t}}\left[\left(\theta_{d}^{S} \circ \operatorname{Sym}^{d, d}\left(r_{t}\right)\right)^{-1}(0)\right]$, then by properties of the inverse of a composition and by the surjectivity of $\theta_{d}^{C_{t}}$ we get $r_{t *}^{-1}(0)=\theta_{d}^{C_{t}}\left[\left(\theta_{d}^{S} \circ \operatorname{Sym}^{d, d}\left(r_{t}\right)\right)^{-1}(0)\right]$, i.e., $G_{t}=\theta_{d}^{C_{t}}\left[\left(\theta_{d}^{S} \circ \operatorname{Sym}^{d, d}\left(r_{t}\right)\right)^{-1}(0)\right]$.
Publications mathématiques de Besançon - 2024

On the other hand, by Lemma $2.32\left(\theta_{d}^{S}\right)^{-1}(0)$ is a countable union of Zariski closed subsets in $\operatorname{Sym}^{d, d}(S)$. It follows that $\left(\theta_{d}^{S} \circ \operatorname{Sym}^{d, d}\left(r_{t}\right)\right)^{-1}(0)$ is the countable union of Zariski closed subsets in $\operatorname{Sym}^{d, d}\left(C_{t}\right)$.
Now for each d, consider the composition Sym ${ }^{d, d}\left(C_{t}\right) \xrightarrow{\theta_{d}^{C_{t}}} \mathrm{CH}_{0}\left(C_{t}\right)_{\mathrm{deg}=0} \xrightarrow{\text { alb } C_{t}} J_{t}$, by Lemma 2.27 it follows that the set-theoretic map $\theta_{d}^{C_{t}}$ is regular and by Lemma 2.29 the composition $a l b_{C_{t}} \circ \theta_{d}^{C_{t}}$ is a morphism of varieties. Since these varieties are projective, this composition is proper (so it takes closed subsets to closed subsets). It follows that $a l b_{C_{t}}\left(G_{t}\right)=a l b_{C_{t}}\left(\theta_{d}^{C_{t}}\left[\left(\theta_{d}^{S} \circ\right.\right.\right.$ $\left.\left.\left.\operatorname{Sym}^{d, d}\left(r_{t}\right)\right)^{-1}(0)\right]\right)=a l b_{C_{t}} \circ \theta_{d}^{C_{t}}\left[\left(\theta_{d}^{S} \circ \operatorname{Sym}^{d, d}\left(r_{t}\right)\right)^{-1}(0)\right]$ is also a countable union of Zariski closed subsets in the abelian variety J_{t}.
Now since $a l b_{C_{t}}\left(G_{t}\right)$ is a countable union of algebraic varieties over \mathbb{C} (which is uncountable), $a l b_{C_{t}}\left(G_{t}\right)$ admits a unique irredundant decomposition inside the abelian variety J_{t}, see Lemma 2.18. Using the isomorphism $a l b_{C_{t}}$ we can identify $a l b_{C_{t}}\left(G_{t}\right)$ with G_{t} and write $G_{t}=\bigcup_{n \in \mathbb{N}}\left(G_{t}\right)_{n}$ for the irredundant decomposition of G_{t} in $J_{t} \simeq \mathrm{CH}_{0}\left(C_{t}\right)_{\operatorname{deg}=0}$.
On the other hand, note that by definition G_{t} is a subgroup in $\mathrm{CH}_{0}\left(C_{t}\right)_{\mathrm{deg}=0}$, hence its image $a l b_{C_{t}}\left(G_{t}\right)$ in J_{t} via $a l b_{C_{t}}$ is also a subgroup in J_{t}.
As J_{t} is an abelian variety and $G_{t} \subset J_{t}$ a subgroup which can be represented as a countable union of Zariski closed subsets in J_{t}, the irredundant decomposition of G_{t} contains a unique irreducible component passing through 0 which is an abelian subvariety of J_{t} (see Lemma 2.19). After renumbering of the components, we may assume that this component is $\left(G_{t}\right)_{0}$.
It is clear that for any $x \in G_{t}$, the set $x+\left(G_{t}\right)_{0}$ is an irreducible Zariski closed subset (just translation of a Zariski closed subset) in G_{t}, and that we can write $G_{t}=\bigcup_{x \in G_{t}}\left(x+\left(G_{t}\right)_{0}\right)$. Ignoring each set $x+\left(G_{t}\right)_{0}$ inside $y+\left(G_{t}\right)_{0}$, for $x, y \in G_{t}$, we get a subset $\Xi_{t} \subset G_{t}$ such that $G_{t}=\bigcup_{x \in \Xi_{t}}\left(x+\left(G_{t}\right)_{0}\right)$ which is an irredundant decomposition of G_{t}.
Now we claim that Ξ_{t} is countable. Indeed, for any $x, y \in \Xi_{t}, x+\left(G_{t}\right)_{0}$ and $y+\left(G_{t}\right)_{0}$ are irreducible and not contained one in another. Now observe that since $x+\left(G_{t}\right)_{0}$ is irreducible and G_{t} is a subgroup, then $x+\left(G_{t}\right)_{0} \subset\left(G_{t}\right)_{n}$ for some n, because otherwise if $x+\left(G_{t}\right)_{0}$ is not contained in $\left(G_{t}\right)_{n}$ for every $n \in \mathbb{N}$, then $x+\left(G_{t}\right)_{0}$ would be the union of the closed subsets of the form $\left(x+\left(G_{t}\right)_{0}\right) \cap\left(G_{t}\right)_{n}$ each of which is not $x+\left(G_{t}\right)_{0}$, contradicting Lemma 2.16. It follows that $\left(G_{t}\right)_{0} \subset-x+\left(G_{t}\right)_{n}$. Similarly, we can prove that $-x+\left(G_{t}\right)_{n}$ is contained in $\left(G_{t}\right)_{l}$ for some $l \in \mathbb{N}$. Then $\left(G_{t}\right)_{0}=\left(G_{t}\right)_{l}$, that is, $\left(G_{t}\right)_{0} \subset-x+\left(G_{t}\right)_{n} \subset\left(G_{t}\right)_{0}$, so $-x+\left(G_{t}\right)_{n}=\left(G_{t}\right)_{0}$, i.e., $x+\left(G_{t}\right)_{0}=\left(G_{t}\right)_{n}$ for each $x \in \Xi_{t}$. It means that Ξ_{t} is countable.
Taking $A_{t}=\left(G_{t}\right)_{0}$, until now we have proved that there is there is an Abelian variety $A_{t} \subset J_{t}$ such that $G_{t}=\bigcup_{x \in \Xi_{t}}\left(x+A_{t}\right)$, where $\Xi_{t} \subset G_{t}$ is a countable subset. Equivalently, we can write as follows: there is an Abelian variety $A_{t} \subset J_{t}$ such that $G_{t}=\bigcup_{\text {countable }}$ translates of A_{t}. To complete the proof of item (a) we next show that A_{t} is contained in B_{t}.
Let $i: A_{t} \hookrightarrow J_{t}$ be the closed embedding of A_{t} into J_{t}. Fix an ample line bundle \mathcal{L}_{t} on J_{t}, and let \mathcal{L}_{t}^{\prime} be the pullback of \mathcal{L}_{t} to A_{t} under the embedding i. Then we have an homomorphism $\lambda_{\mathcal{L}_{t}^{\prime}}: A_{t} \rightarrow A_{t}^{\vee}$ from the abelian subvariety A_{t} to its dual induced by \mathcal{L}_{t}^{\prime}, see [14, Chapter 8]. By Remark 8.7 in [14] we have that $\operatorname{dim}\left(A_{t}\right)=\operatorname{dim}\left(A_{t}^{\vee}\right)$. Then we have the Gysin homomorphism $\left(\lambda_{\mathcal{L}_{t}^{\prime}}\right)_{*}: H^{1}\left(A_{t}, \mathbb{Z}\right) \rightarrow H^{1}\left(A_{t}^{\vee}, \mathbb{Z}\right)$ on cohomology groups induced by $\lambda_{\mathcal{L}_{t}^{\prime}}$ (see Definition 3.25). Let $i^{\vee}: J_{t}^{\vee} \hookrightarrow A_{t}^{\vee}$ be the homomorphism on dual abelian varieties (see [14, Chapter 9]) induced by the closed embedding $i: A_{t} \hookrightarrow J_{t}$, this induces the pullback homomorphism $\left(i^{\vee}\right)^{*}: H^{1}\left(A_{t}^{\vee}, \mathbb{Z}\right) \rightarrow H^{1}\left(J_{t}^{\vee}, \mathbb{Z}\right)$ on cohomology groups associated to i^{\vee}.

Let $\lambda_{\mathcal{L}_{t}}: J_{t} \rightarrow J_{t}^{\vee}$ be the homomorphism from the abelian variety J_{t} to its dual induced by \mathcal{L}_{t}, see [[14], Chapter 8]. Then we have the pullback homomorphism $\left(\lambda_{\mathcal{L}_{t}}\right)^{*}: H^{1}\left(J_{t}^{\vee}, \mathbb{Z}\right) \rightarrow$ $H^{1}\left(J_{t}, \mathbb{Z}\right)$ on cohomology groups induced by $\lambda_{\mathcal{L}_{t}}$ (see Definition 3.23).
From the above we get an injective homomorphism on cohomology groups ζ_{t} via the following commutative diagram

Let $w_{t *}: H^{1}\left(J_{t}, \mathbb{Z}\right) \rightarrow H^{1}\left(C_{t}, \mathbb{Z}\right)$ be the isomorphism given by Lemma 3.33 (Fact 3). By Proposition 14 in [1] the image of the composition $H^{1}\left(A_{t}, \mathbb{Z}\right) \xrightarrow[\rightarrow]{\zeta_{t}} H^{1}\left(J_{t}, \mathbb{Z}\right) \xrightarrow[\rightarrow]{w_{\text {t* }}} H^{1}\left(C_{t}, \mathbb{Z}\right)$ is contained in the kernel of the Gysin homomorphism on cohomology groups $H^{1}\left(C_{t}, \mathbb{Z}\right)_{\text {van }}=$ $\operatorname{Ker}\left(H^{1}\left(C_{t}, \mathbb{Z}\right) \xrightarrow{r_{\text {t* }}} H^{3}(S, \mathbb{Z})\right)$, i.e.,

$$
\begin{equation*}
\left(w_{t *} \circ \zeta_{t}\right)\left(H^{1}\left(A_{t}, \mathbb{Z}\right)\right) \subset H^{1}\left(C_{t}, \mathbb{Z}\right)_{\text {van }} \tag{2}
\end{equation*}
$$

Now recall that B_{t} is the abelian subvariety of J_{t} corresponding to the Hodge substructure on $H^{1}\left(C_{t}, \mathbb{Z}\right)_{\text {van }}$, so $H^{1}\left(B_{t}, \mathbb{Z}\right) \cong\left(H^{1}\left(C_{t}, \mathbb{Z}\right)_{\text {van }}\right)^{*} \cong H^{1}\left(C_{t}, \mathbb{Z}\right)_{\text {van }}$ (the composition of these isomorphisms is $w_{t *}$, see proof of Lemma 3.33). On the other hand, since $w_{t *}$ is an isomorphism and ζ_{t} is injective we can identify $\left(w_{t *} \circ \zeta_{t}\right)\left(H^{1}\left(A_{t}, \mathbb{Z}\right)\right)$ with $H^{1}\left(A_{t}, \mathbb{Z}\right)$. Then by the inclusion (2), we get $H^{1}\left(A_{t}, \mathbb{Z}\right) \subset H^{1}\left(B_{t}, \mathbb{Z}\right)$, so $A_{t} \subset B_{t}$.

Remark 5.3. - Note that the proof of item a of Theorem 5.1 also holds for any smooth hyperplane section C of a surface S over and uncountable algebraically closed field k of characteristic zero and in the adequate context.
5.2. On the Proof of Item b. - In order to prove item b we will use the following lemmas. Let k be an uncountable algebraically closed field of characteristic 0 . Let T be an integral scheme over k, \mathscr{X}_{T} be a scheme over T and $X_{t}=f_{T}^{-1}(t)$ be the fiber over $t \in T$ of the flat family $f_{T}: \mathscr{X}_{T} \rightarrow T$. Recall that a c-open subset of an integral scheme is the complement of a c-closed subset (Definition 2.20).

Lemma 5.4. - Given an integral base T over k there exits a natural c-open subset U_{0} in T such that every $t \in U_{0}$ is scheme-theoretic isomorphic to the generic geometric point $\bar{\eta}$ point of T and given a flat family $f_{T}: \mathscr{X}_{T} \rightarrow T$ over T, the above scheme-theoretic isomorphism of points induce an isomorphism between the fiber X_{t}, for all closed points $t \in U_{0}$, and the geometric generic fiber $X_{\bar{\eta}}$, as schemes over $\operatorname{Spec}(\mathbb{Q})$, moreover these isomorphisms preserve rational equivalence of algebraic cycles (see [1, §5]).

Proof. - Assume that T is affine (as one can always cover the integral scheme T by open affine subschemes).

Step 1. - We begin with the strategy of the construction of the c-open subset in T.
Recall that the transcendental degree $[k: \mathbb{Q}]$ of the uncountable algebraically closed field k over its primary subfield, i.e., over \mathbb{Q}, is infinity.
Since T is an integral affine scheme of finite type over k, then it is of the form $T=$ $\operatorname{Spec}\left(\frac{k\left[x_{1}, \ldots, x_{n}\right]}{I(T)}\right)$, where $I(T) \subset k\left[x_{1}, \ldots, x_{n}\right]$ is the ideal of T.
Publications mathématiques de Besançon - 2024

Let $f_{1}, \ldots, f_{m} \in k\left[x_{1}, \ldots, x_{n}\right]$ be a set of generators of $I(T)$. As the polynomials f_{i} have a finite number of coefficients, attaching the coefficients of f_{1}, \ldots, f_{m} to \mathbb{Q} we get an extension of \mathbb{Q}, say \widetilde{k}, which is a countable subfield of k since \mathbb{Q} is countable. Let k^{\prime} be the algebraic closure of \widetilde{k}, then it is a countable algebraically closed subfield of k.
Let T^{\prime} be the affine integral scheme defined by the ideal $I\left(T^{\prime}\right)$ generated by f_{1}, \ldots, f_{m} in $k^{\prime}\left[x_{1}, \ldots, x_{n}\right]$. Since $\frac{k\left[x_{1}, \ldots, x_{n}\right]}{I(T)}=\frac{k^{\prime}\left[x_{1}, \ldots, x_{n}\right]}{I\left(T^{\prime}\right)} \otimes_{k^{\prime}} k$ we have: $T=T^{\prime} \times \operatorname{Spec}\left(k^{\prime}\right) \operatorname{Spec}(k)$.
Denote by $k[T]=\frac{k\left[x_{1}, \ldots, x_{n}\right]}{I(T)}$ (resp. $\left.k\left[T^{\prime}\right]=\frac{k^{\prime}\left[x_{1}, \ldots, x_{n}\right]}{I\left(T^{\prime}\right)}\right)$ to the coordinate ring of T (resp. of T^{\prime}) and by $k(T)$ (resp. by $k\left(T^{\prime}\right)$) its function field.
Note that a closed subscheme Z^{\prime} of T^{\prime} is defined by an ideal \mathfrak{a} in $k^{\prime}\left[T^{\prime}\right]=\frac{k^{\prime}\left[x_{1}, \ldots, x_{n}\right]}{I\left(T^{\prime}\right)}$, and let $i_{Z^{\prime}}: Z^{\prime} \hookrightarrow T^{\prime}$ be the corresponding closed embedding. Since the field k^{\prime} is countable and \mathfrak{a} is finitely generated, there exist only countably many closed subschemes Z^{\prime} in T^{\prime}. For each Z^{\prime} denote the complement by $U_{Z^{\prime}}=T^{\prime} \backslash \operatorname{im}\left(i_{Z^{\prime}}\right)$.
Let $Z=Z^{\prime} \times_{\operatorname{Spec}\left(k^{\prime}\right)} \operatorname{Spec}(k), U_{Z}=U_{Z^{\prime}} \times_{\operatorname{Spec}\left(k^{\prime}\right)} \operatorname{Spec}(k)$ and $i_{Z}: Z \hookrightarrow T$ be the pullbacks of $Z^{\prime}, U_{Z^{\prime}}$ and $i_{Z^{\prime}}$ respectively, with respect to the extension k / k^{\prime}, then $U_{Z}=T \backslash \operatorname{im}\left(i_{Z}\right)$.
Let $U_{0}=T \backslash \bigcup_{Z^{\prime}} \operatorname{im}\left(i_{Z}\right)=\bigcap_{Z^{\prime}} U_{Z}$, where the union is taken over closed subschemes Z^{\prime}, such that $\operatorname{im}\left(i_{Z}\right) \neq T$. So U_{0} is the complement of the countable union of Zariski closed subsets, i.e., U_{0} is c-open by construction.

Recall that a k-point t of a scheme T is a section of the structural morphism $h: T \rightarrow \operatorname{Spec}(k)$, that is, a morphism $f_{t}: \operatorname{Spec}(k) \rightarrow T$ such that $h \circ f_{t}=i d_{\operatorname{Spec}(k)}$.
Step 2. - Now we will see that there is an important isomorphism of fields related with each k-point of the c-open U_{0} constructed above. More precisely
Claim. - Let $\overline{k(T)}$ be the algebraic closure of the field $k(T)$. For a k-point ${ }^{1} t$ in U_{0}, one can construct a field isomorphism $e_{t}: \overline{k(T)} \xrightarrow{\sim} k$ such that for $f \in k^{\prime}\left[T^{\prime}\right]$ we have $e_{t}(f)=f(t)$.
Proof of the Claim. - Let t be a k-point in U_{0}, that is, a morphism $f_{t}: \operatorname{Spec}(k) \rightarrow T$. Let $\pi: T=T^{\prime} \times_{\operatorname{Spec}\left(k^{\prime}\right)} \operatorname{Spec}(k) \rightarrow T^{\prime}$ be the projection, since $t \in U_{0}$ by the construction of U_{0} we have that $\pi(t)=\eta^{\prime} \in \bigcap_{Z^{\prime}} U_{Z^{\prime}}$ where the intersection is taken over the closed subschemes Z^{\prime} of T^{\prime} such that $\operatorname{im}\left(i_{Z^{\prime}}\right) \neq T^{\prime}$. Therefore η^{\prime} is the generic point of T^{\prime}, since the generic point of an integral scheme is unique. This is the same to say that there exists a morphism $h_{t}:\{t\}=\operatorname{Spec}(k) \rightarrow \operatorname{Spec}\left(k^{\prime}\left(T^{\prime}\right)\right)=\eta^{\prime}$ such that the following diagram commutes

In terms of coordinate rings this means that there exist a homomorphism $\epsilon_{t}: k^{\prime}\left(T^{\prime}\right) \rightarrow k$ such that the following diagram commutes

[^0]Here k is considered as the residue field of the scheme T at $t, e v_{t}: k[T] \rightarrow k$ is the evaluation at t morphism, corresponding to the morphism f_{t}, and that ϵ_{t} is the homomorphism corresponding to the morphism h_{t}.
Since $k^{\prime}\left[T^{\prime}\right] \rightarrow k[T]$ is injective, $k^{\prime}\left[T^{\prime}\right] \backslash\{0\}$ is a multiplicative system in $k[T]$. Furthermore we have $\left(k^{\prime}\left[T^{\prime}\right] \backslash\{0\}\right)^{-1} k[T]=k[T] \otimes_{k^{\prime}\left[T^{\prime}\right]} k^{\prime}\left(T^{\prime}\right)$. Hence there exists a unique universal morphism $\varepsilon_{t}: k[T] \otimes_{k^{\prime}\left[T^{\prime}\right]} k^{\prime}\left(T^{\prime}\right) \rightarrow k$ such that $\left.\varepsilon_{t}\right|_{k[T]}=e v_{t}$ and $\left.\varepsilon_{t}\right|_{k^{\prime}\left(T^{\prime}\right)}=\epsilon_{t}$.
We now construct an embedding of $k(T) \hookrightarrow k$ whose restriction to $k^{\prime}\left(T^{\prime}\right)$ is ϵ_{t}.
Let $s=\operatorname{dim}\left(T^{\prime}\right)=\operatorname{Tr} \cdot \operatorname{deg}\left(k^{\prime}(T) / k^{\prime}\right)=$ krull dimension of $k^{\prime}\left[T^{\prime}\right]$. Here we denote by $\operatorname{Tr} . \operatorname{deg}\left(k^{\prime}(T) / k^{\prime}\right)$ to the transcendence degree of $k\left(T^{\prime}\right)$ over k^{\prime}, then by the Noether normalization lemma there exist s algebraically independent elements x_{1}, \ldots, x_{s} in $k^{\prime}\left[T^{\prime}\right]$ such that $k^{\prime}\left[T^{\prime}\right]$ is a finitely generated module over the polynomial ring $k^{\prime}\left[x_{1}, \ldots, x_{s}\right]$ and $k^{\prime}\left(T^{\prime}\right)$ is algebraic over the field of fractions $k^{\prime}\left(x_{1}, \ldots, x_{s}\right)$.
It follows that $k[T]$ is a finitely generated module over the polynomial ring $k\left[x_{1}, \ldots, x_{s}\right]$ and $k(T)$ is algebraic over the field of fractions $k\left(x_{1}, \ldots, x_{s}\right)$.
Let $b_{i}=e v_{t}\left(x_{i}\right)$ for $i=1, \ldots, s$. Since $t \in U_{0}$ we have that b_{1}, \ldots, b_{s} are algebraically independent over k^{\prime}. Indeed, if b_{1}, \ldots, b_{s} are algebraic dependent over k^{\prime} there is a non-trivial polynomial f in s variables with coefficients in k^{\prime} such that $f\left(b_{1}, \ldots, b_{s}\right)=0$ or equivalently such that $f\left(e v_{t}\left(x_{1}\right), \ldots, e v_{t}\left(x_{s}\right)\right)=0$, so we have a polynomial such that t is a zero of it, then $t \notin U_{0}$ which is a contradiction.
We can extend the set b_{1}, \ldots, b_{s} to a transcendental basis B of k over k^{\prime}, so that $k=k^{\prime}(B)$. As B have an infinite cardinality $B \backslash\left\{b_{1}, \ldots, b_{s}\right\}$ also have an infinite cardinality, choosing a bijection $B \xrightarrow[\rightarrow]{\sim} B \backslash\left\{b_{1}, \ldots, b_{s}\right\}$ we obtain the following field embedding $k=k^{\prime}(B) \simeq$ $k^{\prime}\left(B \backslash\left\{b_{1}, \ldots, b_{s}\right\}\right) \subset k^{\prime}(B)$ over k^{\prime} such that b_{1}, \ldots, b_{s} is algebraically independent over its image. Then we get a field embedding $E_{t}: k\left(x_{1}, \ldots, x_{s}\right) \hookrightarrow k$ sending x_{i} to b_{i}. Note that $\left.E_{t}\right|_{k^{\prime}\left(x_{1}, \ldots, x_{s}\right)}=\left.\epsilon_{t}\right|_{k^{\prime}\left(x_{1}, \ldots, x_{s}\right)}$.
Since $k(T)=k\left(x_{1}, \ldots, x_{s}\right) \otimes_{k^{\prime}\left(x_{1}, \ldots, x_{s}\right)} k^{\prime}\left(T^{\prime}\right)$, we get a uniquely defined embedding $k(T) \rightarrow k$ as the composition $k(T) \rightarrow k\left(x_{1}, \ldots, x_{s}\right) \hookrightarrow k$. The embedding $k(T) \rightarrow k$ can extend to an isomorphism $e_{t}: \overline{k(T)} \xrightarrow{\sim} k$.
Finally, by the commutativity of the diagram (3), if we take $f \in k^{\prime}\left[T^{\prime}\right]$ we can identify it with its image via the inclusions $k^{\prime}\left[T^{\prime}\right] \rightarrow k[T]$ and $k^{\prime}\left[T^{\prime}\right] \rightarrow k^{\prime}\left(T^{\prime}\right)$, then we have $e v_{t}(f)=\epsilon_{t}(f)$. since $\left.e_{t}\right|_{k^{\prime}\left(T^{\prime}\right)}=\epsilon_{t}$ we have $e_{t}(f)=f(t)$.
Step 3. - Given a $f_{T}: \mathscr{X}_{T} \rightarrow T$ a smooth morphism of schemes over k, we now see that the above isomorphism of fields induces an isomorphism of the fibers of f_{T}.
Let $f_{T}: \mathscr{X}_{T} \rightarrow T$ be a smooth morphism of schemes over k. Extending, if necessary, the field k^{\prime} used to construct the c-open U_{0} we may assume that there exists a morphism of schemes $f_{T^{\prime}}^{\prime}: \mathscr{X}_{T^{\prime}}^{\prime} \rightarrow T^{\prime}$ over the countable algebraically closed field k^{\prime}, such that f_{T} is the pullback of $f_{T^{\prime}}^{\prime}$ under the field extension k / k^{\prime}. Let

- $\eta^{\prime}=\operatorname{Spec}\left(k^{\prime}\left(T^{\prime}\right)\right)$ be the generic point of the affine scheme T^{\prime}, and let $X_{\eta^{\prime}}^{\prime}$ be the fibre of the family $f_{T^{\prime}}^{\prime}: \mathscr{X}_{T^{\prime}}^{\prime} \rightarrow T^{\prime}$ over η^{\prime},
$-\eta=\operatorname{Spec}(k(T))$ be the generic point of the affine scheme T, and let X_{η} be the fibre of the family $f_{T}: \mathscr{X}_{T} \rightarrow T$ over η,
$-\bar{\eta}=\operatorname{Spec}(\overline{k(T)})$ be the geometric generic point of the affine scheme T, and let $X_{\bar{\eta}}$ be the fibre of the family $f_{T}: \mathscr{X}_{T} \rightarrow T$ over $\bar{\eta}$.
Publications mathématiques de Besançon - 2024

The above isomorphism of fields $e_{t}: \overline{k(T)} \xrightarrow{\sim} k$, induces a scheme-theoretic isomorphism between the closed k -point $t \in U_{0}$ and the geometric generic point $\bar{\eta}$ of T

$$
\operatorname{Spec}\left(e_{t}\right):\{t\}=\operatorname{Spec}(k) \longrightarrow \operatorname{Spec}(\overline{k(T)})=\{\bar{\eta}\}
$$

over η^{\prime}, since we have $h_{t}=\operatorname{Spec}\left(\epsilon_{t}\right): \operatorname{Spec}(k) \rightarrow \eta^{\prime}$ and $\operatorname{Spec}(\overline{k(T)}) \rightarrow \eta^{\prime}$.
Pulling back the scheme-theoretic isomorphism $\operatorname{Spec}\left(e_{t}\right)$ onto the fibres of the family f_{T} we obtain the cartesian squares

and pulling back $\operatorname{Spec}\left(\epsilon_{t}\right)$ onto the fibers we obtain

similarly, we get $X_{\bar{\eta}} \rightarrow X_{\eta^{\prime}}^{\prime}$ by pulling back $\operatorname{Spec}(\overline{k(T)}) \rightarrow \operatorname{Spec}\left(k^{\prime}\left(T^{\prime}\right)\right)$.
Note that the morphism κ_{t} induced by $\operatorname{Spec}\left(e_{t}\right)=h_{t}$ is an isomorphism of schemes over $X_{\eta^{\prime}}^{\prime}$.
Step 4. - Next we describe the isomorphism between fibres X_{t} and $X_{t^{\prime}}$ with $t, t^{\prime} \in U_{0}$.
Let t^{\prime} be another closed point of U_{0}, then we also have the isomorphism of fields $e_{t^{\prime}}: \overline{k(T)} \xrightarrow{\sim}$ $k\left(t^{\prime}\right)=k$, then $\sigma_{t t^{\prime}}: k(t)=k \xrightarrow{e_{t}^{-1}} \overline{k(T)} \xrightarrow{e_{t^{\prime}}} k=k\left(t^{\prime}\right)$ is an automorphism of k.
Let $\left(X_{t}\right)_{\sigma_{t t^{\prime}}}=X_{t} \times_{\operatorname{Spec}(k)} \operatorname{Spec}(k)$ with respect to the automorphism of $\operatorname{schemes} \operatorname{Spec}\left(\sigma_{t t^{\prime}}\right)$: $\operatorname{Spec}(k) \rightarrow \operatorname{Spec}(k)$ induced by $\sigma_{t t^{\prime}}$, and let $w_{\sigma_{t t^{\prime}}}:\left(X_{t}\right)_{\sigma_{t t^{\prime}}} \xrightarrow{\sim} X_{t}$ be the corresponding isomorphism on schemes over $\operatorname{Spec}\left(k^{\sigma_{t t^{\prime}}}\right)$, where $k^{\sigma_{t t^{\prime}}}$ is a subfield of $\sigma_{t t^{\prime}}$ invariants in k.
Since $k^{\prime} \subset k^{\sigma_{t t^{\prime}}} \subset k$, we have that the projection $\mathscr{X}_{T} \rightarrow \mathscr{X}_{T^{\prime}}^{\prime}$ factorises through $\left(\mathscr{X}_{T^{\prime}}^{\prime}\right)_{k^{\sigma}}{ }^{\sigma} t^{\prime}=$ $\mathscr{X}_{T^{\prime}}^{\prime} \times{ }_{\operatorname{Spec}\left(k^{\prime}\right)} \operatorname{Spec}\left(k^{\sigma} \sigma_{t t^{\prime}}\right)$, so, we can consider the fiber X_{t} as a scheme over $\left(\mathscr{X}_{T^{\prime}}^{\prime}\right)_{k^{\sigma}{ }_{t t^{\prime}}}$ just by composing the inclusion of $X_{t} \hookrightarrow \mathscr{X}_{T}$ with the morphism $\mathscr{X}_{T} \rightarrow\left(\mathscr{X}_{T^{\prime}}^{\prime}\right)_{k^{\sigma} t_{t t^{\prime}}}$.
Recall that $\sigma_{t t^{\prime}}: k(t)=k \rightarrow k=k\left(t^{\prime}\right)$ and let $\kappa_{t t^{\prime}}: X_{t^{\prime}} \xrightarrow{\kappa_{t \prime^{\prime}}} X_{\bar{\eta}} \xrightarrow{\kappa_{t}^{-1}} X_{t}$ be the induced isomorphism of the fibres as schemes over $\operatorname{Spec}\left(k^{\sigma} t_{t t^{\prime}}\right)$. It follows that: $\left(X_{t}\right)_{\sigma_{t t^{\prime}}}=X_{t^{\prime}}$, the isomorphism $w_{\sigma t t^{\prime}}: X_{t^{\prime}} \xrightarrow{\sim} X_{t}$ is over $\left(\mathscr{X}_{T^{\prime}}^{\prime}\right)_{k^{\sigma}}{ }_{t t^{\prime}}$, and $w_{\sigma_{t t^{\prime}}}=\kappa_{t t^{\prime}}$.

Step 5. - Finally, we have the following claim.
Claim. - The scheme-theoretic isomorphisms κ_{t}, for $t \in U_{0}$, preserve rational equivalence of algebraic cycles.

For the proof of this claim see [1, Lemma 19].
Now we study some facts about the closed embedded of the following two important family for us:

For any integral scheme T over \mathbb{C} and for any morphism of schemes $T \rightarrow\left(\mathbb{P}^{d}\right)^{*}$ let $f_{T}: \mathscr{C}_{T} \rightarrow T$ be the family of hyperplane sections of S parametrized by $T, g_{T}: \mathcal{S}_{T} \rightarrow T$ the family such that each fiber over T is isomorphic to S, and

the closed embedding of schemes over T. Then we also have closed embeddings r_{t} and $r_{\bar{\eta}}$ over $t=\operatorname{Spec}(\mathbb{C})$ and $\bar{\eta}$ respectively.
By Lemma 5.4 there exits a natural c-open subset U_{0} in T such that the residue field of any closed point in U_{0} is isomorphic to the residue field of the geometric generic point of T, since this isomorphism of fields induce a scheme-theoretic isomorphism between points, this c-open subset U_{0} is such that any closed point $t \in U_{0}$ is scheme-theoretic isomorphic to the geometric generic point $\bar{\eta}$ of T.
Extending appropriately the countably algebraically closed field k^{\prime}, used to construct U_{0}, we may assume that there exists morphisms of schemes $f_{T^{\prime}}^{\prime}, g_{T^{\prime}}^{\prime}$ and $r_{T^{\prime}}^{\prime}$ over k^{\prime} with $f_{T^{\prime}}^{\prime}=$ $g_{T^{\prime}}^{\prime} \circ r_{T^{\prime}}^{\prime}$, and such that f_{T}, g_{T} and r_{T} are the pullback of $f_{T^{\prime}}^{\prime}, g_{T^{\prime}}^{\prime}$ and $r_{T^{\prime}}^{\prime}$ respectively under the field extension \mathbb{C} / k^{\prime}. Then the scheme-theoretic isomorphism between the points $t \in U_{0}$ and the geometric generic point $\bar{\eta}$ of T induce isomorphisms $\kappa_{t}^{f_{T}}: C_{t} \rightarrow C_{\bar{\eta}}$ (resp. $\kappa_{t}^{g_{T}}: S_{t} \rightarrow S_{\bar{\eta}}$) between the fiber C_{t} (resp. S_{t}) over t and the geometric generic fiber $C_{\bar{\eta}}$ (resp. $S_{\bar{\eta}}$) over $\bar{\eta}$ of the family f_{T} (resp. g_{T}) for every $t \in U_{0}$, as schemes over $\operatorname{Spec}(\mathbb{Q})$, and for any two points t and t^{\prime} in U_{0} one has the isomorphisms $\kappa_{t t^{\prime}}^{f_{T}}: C_{t} \rightarrow C_{t^{\prime}}\left(\right.$ resp. $\left.\kappa_{t t^{\prime}}^{g_{T}}: S_{t} \rightarrow S_{t^{\prime}}\right)$. Moreover, for any closed point $t \in U_{0}$, the following diagram

commutes, where r_{t} and $r_{\bar{\eta}}$ are the morphisms on fibres induced by r_{T}. Then the isomorphisms $\kappa_{t t^{\prime}}^{f_{T}}=\left(\kappa_{t}^{f_{T}}\right)^{-1} \circ \kappa_{t^{\prime}}^{f_{T}}\left(\right.$ resp. $\left.\kappa_{t t^{\prime}}^{g_{T}}=\left(\kappa_{t}^{g_{T}}\right)^{-1} \circ \kappa_{t^{\prime}}^{g_{T}}\right)$ commute with closed embeddings r_{t} and $r_{t^{\prime}}$ for any two closed points t, t^{\prime} in U_{0}. Removing more Zariski closed subset from U_{0} if necessary we may assume that the fibres of the families f_{T} and g_{T} over the points on U_{0} are smooth, that is, we can assume that $U_{0} \subset U$.
For every closed point $t \in U_{0}$, let alb $_{C_{t}}: \mathrm{CH}_{0}\left(C_{t}\right)_{\mathrm{deg}=0} \xrightarrow{\sim} J_{t}$ be the corresponding isomorphisms given by Fact 1 (see Lemma 3.46) and denote by $a l b_{C_{\bar{\eta}}}: \mathrm{CH}_{0}\left(C_{\bar{\eta}}\right)_{\operatorname{deg}=0} \xrightarrow{\sim} J_{\bar{\eta}}$ to the isomorphism for the geometric generic fiber (see Remark 3.47).
By the Step 5 of Lemma 5.4, for any $t \in U_{0}$ the scheme-theoretic isomorphisms $\kappa_{t}^{f_{T}}: C_{t} \rightarrow C_{\bar{\eta}}$ of the family f_{T} preserve rational equivalence, then they induce the push-forward isomorphisms of Chow groups $\kappa_{t *}^{f_{T}}: \mathrm{CH}_{0}\left(C_{t}\right)_{\operatorname{deg}=0} \rightarrow \mathrm{CH}_{0}\left(C_{\bar{\eta}}\right)_{\operatorname{deg}=0}$ then we get $l_{t}: J_{t} \rightarrow J_{\bar{\eta}}$ as the Publications mathématiques de Besançon - 2024
composition given by the commutative diagram

Now consider the following commutative diagram

Since $a l b_{C_{t}} \circ \theta_{d}^{C_{t}}$ is a regular morphism of schemes over \mathbb{C} and $a l b_{C_{\bar{\eta}}} \circ \theta_{d}^{C_{\bar{\eta}}}$ is a regular morphism of schemes over $\overline{\mathbb{C}(T)}$ the algebraic closure of the function field of T (see Lemma 2.27 and Lemma 2.29) and the morphism $\operatorname{Sym}^{d, d}\left(\kappa_{t}^{f_{T}}\right)$ is a regular morphism over \mathbb{Q}, it follows that the homomorphism $l_{t}: J_{t} \rightarrow J_{\bar{\eta}}$ is a regular morphism of schemes over \mathbb{Q}.
Similarly, by Step 5 of Lemma 5.4, for any $t \in U_{0}$ the scheme-theoretic isomorphisms $\kappa_{t}^{g_{T}}$: $S_{t} \rightarrow S_{\bar{\eta}}$ on the fibers of the family g_{T} preserve rational equivalence, then they induce the push-forward isomorphisms of groups $\kappa_{t *}^{g_{T}}: \mathrm{CH}_{0}\left(S_{t}\right)_{\operatorname{deg}=0} \rightarrow \mathrm{CH}_{0}\left(S_{\bar{\eta}}\right)_{\mathrm{deg}=0}$, and from the commutative diagram (4) one obtains the commutative diagram in Chow groups

For every closed $t \in U_{0}$, let A_{t} and B_{t} be the abelian subvarieties of J_{t} obtained in the proof of item a and let $A_{\bar{\eta}}$ and $B_{\bar{\eta}}$ be the abelian subvarieties of $J_{\bar{\eta}}$ which can be obtained in a similar way to the proof of item a corresponding to the closed embedding $r_{\bar{\eta}}: C_{\bar{\eta}} \rightarrow S_{\bar{\eta}}$ (see Remark 5.3).

Lemma 5.5. - For any closed point $t \in U_{0}, l_{t}\left(B_{t}\right)=B_{\bar{\eta}}$ and $l_{t}\left(A_{t}\right)=A_{\bar{\eta}}$.
Proof. - To prove $l_{t}\left(A_{t}\right)=A_{\bar{\eta}}$ recall that by item a we have $G_{t}=\bigcup_{x \in \Xi_{t}}\left(x+A_{t}\right)$ and $G_{\bar{\eta}}=\bigcup_{x \in \Xi_{\bar{\eta}}}\left(x+A_{\bar{\eta}}\right)$. By definition $l_{t}=a l b_{C_{\bar{\eta}}} \circ \kappa_{t *}^{f_{T}} \circ a l b_{C_{t}}^{-1}$ then $l_{t}\left(G_{t}\right)=a l b_{C_{\bar{\eta}}} \circ \kappa_{t *}^{f_{T}} \circ a l b_{C_{t}}^{-1}\left(G_{t}\right)$ equivalently we have $l_{t}\left(G_{t}\right)=a l b_{C_{\bar{\eta}}} \circ \kappa_{t *}^{f_{T}}\left(G_{t}\right)$ via the identification $a l b_{C_{t}}^{-1}$. By the commutative diagram (5) we have $\kappa_{t *}^{f_{T}}\left(G_{t}\right)=G_{\bar{\eta}}$, then

$$
\begin{equation*}
l_{t}\left(G_{t}\right)=G_{\bar{\eta}} \tag{6}
\end{equation*}
$$

via the isomorphism $a l b_{C_{\bar{\eta}}}$. On the other hand,

$$
\begin{equation*}
l_{t}\left(G_{t}\right)=l_{t}\left(\bigcup_{x \in \Xi_{t}}\left(x+A_{t}\right)\right)=\bigcup_{x \in \Xi_{t}}\left(l_{t}(x)+l_{t}\left(A_{t}\right)\right) \tag{7}
\end{equation*}
$$

By equations (6) and (7) we have $\bigcup_{x \in \Xi_{t}}\left(l_{t}(x)+l_{t}\left(A_{t}\right)\right)=\bigcup_{x \in \Xi_{\bar{\eta}}}\left(x+A_{\bar{\eta}}\right)$ inside of $J_{\bar{\eta}}$. Note that $l_{t}\left(A_{t}\right)$ is Zariski closed in $J_{\bar{\eta}}$ since the group isomorphism l_{t} are regular morphisms of schemes over $\operatorname{Spec}(\mathbb{Q})$. Since $l_{t}\left(A_{t}\right)$ is a subgroup of in $J_{\bar{\eta}}$, it is an abelian subvariety in $J_{\bar{\eta}}$. As the right and left terms of the above equality are irredundant decomposition of $G_{\bar{\eta}}$ by the uniqueness of it (see Lemma 2.18) and by the fact that the irredundant decomposition of $G_{\bar{\eta}}$ must contain a unique irreducible component passing through 0 (see Lemma 2.19) we have that $l\left(A_{t}\right)=A_{\bar{\eta}}$.

Remark 5.6. - The above Lemma 5.5 tells us that one can study the varieties A_{t} in a family either working at the geometric generic point or at a very general closed point on the base scheme.

Now, choose $L \cong \mathbb{P}^{1}$ be a Lefschetz pencil of hyperplanes for the surface S (see Definition 4.6 and Proposition 4.10) such that $L \cap U_{0} \neq \emptyset$.

Lemma 5.7. - Let $t \in L \cap U_{0}$, let A_{t} be the abelian subvariety of $B_{t} \subset J_{t}$ obtained in the proof of item a). Then either $A_{t}=0$ or $A_{t}=B_{t}$.

Proof. - Since $L \cong \mathbb{P}^{1}$ be a Lefschetz pencil of hyperplanes for the surface S passing through t (if we think of this Lefschetz pencil as the family of hyperplane sections $\left(C_{t}\right)_{t \in L}$ parametrized by L this means that C_{t} corresponding to this t is a member of this family), then it gives rise to a morphism $f_{L}: \mathscr{C}_{L} \rightarrow L$, where \mathscr{C}_{L} is smooth because it can be identified with the blowing up $\widetilde{S}=\left\{(x, t) \in S \times L: x \in C_{t}=S \cap H_{t}\right\}$ of S at the base locus A_{L} of the pencil, and $f_{L}=\left.\operatorname{pr}_{2}\right|_{\tilde{S}}: \widetilde{S} \rightarrow L$. Moreover, each hyperplane section C_{t} of S parametrized by points of L can be naturally identified with the fibre $f_{L}^{-1}(t) \subset \widetilde{S}$, so each fibre C_{t} of f_{L} has at most one ordinary double point as singularity.
Suppose in addition that $\operatorname{dim}\left(\Delta_{S}\right)=d-1$, i.e., the discriminant locus is a hypersurface, then by Proposition $4.10 L$ meets the discriminant hypersurface Δ_{S} transversely in the open dense subset $\Delta_{S}^{0} \subset \Delta_{S}$ parametrizing hyperplanes in \mathbb{P}^{d} such that the corresponding hyperplane sections of S has at most one ordinary double point as singularity, that is $L \cap \Delta_{S}=\left\{0_{1}, \ldots, 0_{M}\right\}$ is a finite subset of L, then from Remark 4.53 and Zariski Theorem 4.54 we can conclude that if we denote by $V=L-L \cap \Delta_{S}$, then we have the monodromy action

$$
\rho_{V}: \pi_{1}(V, t) \longrightarrow \operatorname{Aut}\left(H^{1}\left(C_{t}, \mathbb{Q}\right)\right)_{\mathrm{van}}
$$

Now we claim that the local monodromy representation ρ_{V} is irreducible.
Proof of the claim. - Indeed, recall that $L \cap \Delta_{S}=\left\{0_{1}, \ldots, 0_{M}\right\}$ are the critical values of the Lefschetz pencil $L \cong \mathbb{P}^{1}$. For each 0_{i} with $i=1, \ldots, M$, consider the small disk $D_{i} \subset L$ centered at $0_{i}, t_{i} \in D_{i}^{*}$ and γ_{i} the path joining t to t_{i}. Let $\delta_{i}^{\prime} \in H_{1}\left(C_{t_{i}}, \mathbb{Q}\right)=H^{1}\left(C_{t_{i}}, \mathbb{Q}\right)$ be the vanishing cycle (the homology class of the vanishing sphere $S_{t_{i}}^{1} \subset C_{t_{i}}$) which is well defined up to sign as a generator of $\operatorname{Ker}\left(H^{1}\left(C_{t_{i}}, \mathbb{Q}\right) \rightarrow H^{1}\left(C_{\Delta_{i}}, \mathbb{Q}\right)\right)$ and recall that by trivialising the fibration $\left.f_{L}\right|_{\gamma_{i}}$ over γ_{i} we can construct a diffeomorphism $C_{t_{i}} \cong C_{t}$, so we have a vanishing Publications mathématiques de Besançon - 2024
cycle $\delta_{i} \in H^{1}\left(C_{t}, \mathbb{Q}\right)$ which is image of δ_{i}^{\prime} via the diffeomorphism. By Lemma 4.30 the vanishing cohomology $H^{1}\left(C_{t}, \mathbb{Q}\right)_{\text {van }}$ is generated by these vanishing cycles $\delta_{i}, i=1, \ldots, M$, of the Lefschetz pencil L.
On the other hand, let $\widetilde{\gamma}_{i}$ be the loop in V based at t such that $\widetilde{\gamma}_{i}$ is equal to γ_{i} until t_{i} winds around the disk D_{i} once in the positive direction, and then returns to t via γ_{i}^{-1}. Recall that these loops $\widetilde{\gamma}_{i}, i=1, \ldots, M$, generate $\pi_{1}(V, t)$ and note that the image of the loops $\widetilde{\gamma}_{i}$ via ρ_{V} are elements in $\operatorname{Aut}\left(H^{1}\left(C_{t}, \mathbb{Q}\right)\right.$ van $)$.
Let $F \subset H^{1}\left(C_{t}, \mathbb{Q}\right)_{\text {van }}$ be a nontrivial vector subspace which is stable under the monodromy action ρ_{V}. We must prove that $F=H^{1}\left(C_{t}, \mathbb{Q}\right)_{\text {van }}$.
Let $0 \neq \alpha \in F$. Since by Proposition $4.32,\langle\cdot, \cdot\rangle$ is non-degenerate on $H^{1}\left(C_{t}, \mathbb{Q}\right)_{\text {van }}$ there exists $i \in\{1, \ldots, M\}$ such that $\left\langle\alpha, \delta_{i}\right\rangle \neq 0$.
By the Picard-Lefschetz formula (Theorem 4.47) for $\alpha \in F \subset H^{1}\left(C_{t}, \mathbb{Q}\right)_{\text {van }}$ one has $\rho_{V}\left(\widetilde{\gamma}_{i}\right)(\alpha)=\alpha \pm\left\langle\alpha, \delta_{i}\right\rangle \delta_{i}$ or equivalently, $\rho_{V}\left(\widetilde{\gamma}_{i}\right)(\alpha)-\alpha= \pm\left\langle\alpha, \delta_{i}\right\rangle \delta_{i}$.
Since, by assumption, F is a vector subspace of $H^{1}\left(C_{t}, \mathbb{Q}\right)$ van which is stable under the monodromy action ρ_{V} (so $\rho_{V}\left(\widetilde{\gamma}_{i}\right)(\alpha) \in F$) we have $\rho_{V}\left(\widetilde{\gamma}_{i}\right)(\alpha)-\alpha= \pm\left\langle\alpha, \delta_{i}\right\rangle \delta_{i} \in F$. Then $\delta_{i} \in F$.
But, Corollary 4.56 shows that all the vanishing cycles are conjugate under the monodromy action, so F, which is stable under the monodromy action, must contain all the vanishing cycles. Thus $F=H^{1}\left(C_{t}, \mathbb{Q}\right)_{\text {van }}$.

On the other hand, by Lemma 3.33 (Fact 3) we have $H^{1}\left(C_{t}, \mathbb{Z}\right) \stackrel{w_{t *}}{\sim} H^{1}\left(J_{t}, \mathbb{Z}\right)$ is an isomorphism. Let $H^{1}\left(C_{t}, \mathbb{Q}\right)=H^{1}\left(C_{t}, \mathbb{Z}\right) \otimes \mathbb{Q} \stackrel{\left(w_{t *}\right) \mathbb{Q}}{\sim} H^{1}\left(J_{t}, \mathbb{Z}\right) \otimes \mathbb{Q}=H^{1}\left(J_{t}, \mathbb{Q}\right)$ be the isomorphism induced by $w_{t *}$, we get this because in particular C_{t} is compact (see [22, §7.1.1]).
Let $L_{t}=\left(w_{t *}\right)_{\mathbb{Q}}^{-1}\left(H^{1}\left(A_{t}, \mathbb{Q}\right)\right)$ be the (pre)image in $H^{1}\left(C_{t}, \mathbb{Q}\right)$ of $H^{1}\left(A_{t}, \mathbb{Q}\right) \subset H^{1}\left(J_{t}, \mathbb{Q}\right)$ under the isomorphism $\left(w_{t *}\right)_{\mathbb{Q}}^{-1}$. Then L_{t} is a \mathbb{Q}-vector subspace in $H^{1}\left(C_{t}, \mathbb{Q}\right)$.
Recall also that $H^{1}\left(B_{t}, \mathbb{Z}\right) \stackrel{w_{\text {t* }}}{\sim} H^{1}\left(C_{t}, \mathbb{Z}\right)_{\text {van }}$ (see final part of the proof of item $\left.a\right)$), then it follows that $H^{1}\left(B_{t}, \mathbb{Q}\right) \stackrel{\left(w_{t_{*}}\right) \mathbb{Q}}{\simeq} H^{1}\left(C_{t}, \mathbb{Q}\right)_{\text {van }}$.
Since in item a) we proved that $H^{1}\left(A_{t}, \mathbb{Z}\right) \subset H^{1}\left(B_{t}, \mathbb{Z}\right)$ we get $H^{1}\left(A_{t}, \mathbb{Q}\right) \subset H^{1}\left(B_{t}, \mathbb{Q}\right)$, this implies that $L_{t} \subset H^{1}\left(C_{t}, \mathbb{Q}\right)_{\text {van }}$ in $H^{1}\left(C_{t}, \mathbb{Q}\right)$ via the isomorphism $\left(w_{t *}\right)_{\mathbb{Q}}$. Moreover, L_{t} is a vector subspace in $H^{1}\left(C_{t}, \mathbb{Q}\right)_{\text {van }}$ which has a Hodge structure on it since it corresponds to the abelian subvariety A_{t} of J_{t}, then it is invariant under the monodromy representation ρ_{V} (see Proposition 4.44).
Then, since the monodromy action $\rho_{V}: \pi_{1}(V, t) \rightarrow \operatorname{Aut}\left(H^{1}\left(C_{t}, \mathbb{Q}\right)_{\text {van }}\right)$ on $H^{1}\left(C_{t}, \mathbb{Q}\right)_{\text {van }}$ is irreducible, either $L_{t} \stackrel{\left(w_{t *}\right) \mathbb{Q}}{\sim} H^{1}\left(A_{t}, \mathbb{Q}\right)=0$ and then $A_{t}=0$, or $L_{t} \stackrel{\left(w_{t *}\right) \mathbb{Q}}{\sim} H^{1}\left(A_{t}, \mathbb{Q}\right)=$ $H^{1}\left(C_{t}, \mathbb{Q}\right)_{\mathrm{van}} \stackrel{\left(w_{t_{* *}}\right)}{\sim} H^{1}\left(B_{t}, \mathbb{Q}\right)$ and then $A_{t}=B_{t}$.

Finally, we next prove the item b of the main result of this paper.

Proof of item b of Theorem 5.1. - Let $f: \mathscr{C} \rightarrow \mathbb{P}^{d *}$ be the universal hyperplane section of S, i.e., the family of hyperplane sections of S parametrized by $\mathbb{P}^{d *}$ (see Example 4.51). Let $g: \mathcal{S}=S \times \mathbb{P}^{d *} \rightarrow \mathbb{P}^{d *}$ be the trivial family parametrised by $\mathbb{P}^{d *}$, i.e., the family such that each fiber over $\mathbb{P}^{d *}$ is isomorphic to S.

Let

is the closed embedding of schemes over $\mathbb{P}^{d *}$.
By Lemma 5.4 there exits a natural c-open subset U_{0} in $\mathbb{P}^{d *}$ such that the residue field of any closed point in U_{0} is isomorphic to the residue field of the geometric generic point of $\mathbb{P}^{d *}$, since this isomorphism of fields induces a scheme-theoretic isomorphism between points, this c-open U_{0} is such that any closed point $t \in U_{0}$ is scheme-theoretic isomorphic to the geometric generic point $\bar{\eta}$ of $\mathbb{P}^{d *}$.
Extending appropriately the countably algebraically closed field $k^{\prime} \subset \mathbb{C}$, used to construct U_{0}, we may assume that there exists morphisms of schemes f^{\prime}, g^{\prime} and r^{\prime} over k^{\prime} with $f^{\prime}=g^{\prime} \circ r^{\prime}$ and such that f, g and r are the pullback of f^{\prime}, g^{\prime} and r^{\prime} respectively under the field extension \mathbb{C} / k^{\prime}. Then the scheme-theoretic isomorphism between the points $t \in U_{0}$ and the geometric generic point $\bar{\eta}$ of $\mathbb{P}^{d *}$ induces isomorphisms κ_{t}^{f} (resp. κ_{t}^{g}) between the fiber C_{t} (resp. S_{t}) over t and the geometric generic fiber $C_{\bar{\eta}}$ (resp. $S_{\bar{\eta}}$) over $\bar{\eta}$ of the family f (resp. g) for every $t \in U_{0}$, as schemes over $\operatorname{Spec}(\mathbb{Q})$, and for any two points t and t^{\prime} in U_{0} one has isomorphisms $\kappa_{t t^{\prime}}^{f}: C_{t} \rightarrow C_{t^{\prime}}$ (resp. $\kappa_{t t^{\prime}}^{g}: S_{t} \rightarrow S_{t^{\prime}}$). Moreover, for any closed point $t \in U_{0}$, the following diagram

commutes, where r_{t} and $r_{\bar{\eta}}$ are the morphisms on fibres induced by r. Then the isomorphisms $\kappa_{t t^{\prime}}^{f}=\left(\kappa_{t}^{f}\right)^{-1} \circ \kappa_{t^{\prime}}^{f}\left(\right.$ resp. $\left.\kappa_{t t^{\prime}}^{g}=\left(\kappa_{t}^{g}\right)^{-1} \circ \kappa_{t^{\prime}}^{g}\right)$ commute with closed embeddings r_{t} and $r_{t^{\prime}}$ for any two closed points t, t^{\prime} in U_{0}. Removing more Zariski closed subset from U_{0} if necessary we may assume that the fibres of the families f and g over the points on U_{0} are smooth, that is, we can assume that $U_{0} \subset U$.
Recall that for every closed point $t \in \mathbb{P}^{d *}$ we denote by H_{t} the corresponding hyperplane in \mathbb{P}^{d}.
Let $\Omega \subset \mathbb{P}^{d *}$ be a Zariski closed subset in $\mathbb{P}^{d *}$ such that for every point in $t \in \mathbb{P}^{d *}-\Omega$ the corresponding hyperplane H_{t} does not contain S and $H_{t} \cap S=C_{t}$ is either smooth or contains at most one singular point which is a double point.
Let $G\left(1, \mathbb{P}^{d *}\right)$ be the Grassmannian of lines in $\mathbb{P}^{d *}$. There exists $W \subset G\left(1, \mathbb{P}^{d *}\right)$ a Zariski open subset of $G\left(1, \mathbb{P}^{d *}\right)$ such that for every line $L \in W$ we have $L \cap \Omega=\emptyset$ and its corresponding codimension 2 linear subspace A_{L} in \mathbb{P}^{d} intersects S transversally. In other words, any line $L \in W$ gives rise to a Lefschetz pencil for S (see Corollary 4.12).
Let $Z=\mathbb{P}^{d *}-U_{0}$ be the complement of the c-open U_{0} subset of $\mathbb{P}^{d *}$, then Z is c-closed. It follows that the condition for a line $L \in G\left(1, \mathbb{P}^{d *}\right)$ to be not a subset in Z is c-open. This means that there exists a c-open $A \subset G\left(1, \mathbb{P}^{d *}\right)$ such that for $L \in A$ we have $L \not \subset Z$. It follows that $A \cap W \neq \emptyset$, so we can choose a line $L \subset \mathbb{P}^{d *}$ such that it gives rise to a Lefschetz pencil $f_{L}: \mathscr{C}_{L} \rightarrow L$ for S and $L \cap U_{0} \neq \emptyset$.
Let $t_{0} \in L \cap U_{0}$, then by Lemma 5.7 $A_{t_{0}}=0$ or $A_{t_{0}}=B_{t_{0}}$.
Publications mathématiques de Besançon - 2024

Suppose that $A_{t_{0}}=0$. Applying the Lemma 5.5 to the case $T=\mathbb{P}^{d *}$, we obtain $A_{\bar{\eta}}=0$ because t_{0} and $\bar{\eta}$ are isomorphic since $t_{0} \in U_{0}$. Then applying the same Lemma 5.5 we have $A_{t}=0$ for each closed point $t \in U_{0}$.
Suppose that $A_{t_{0}}=B_{t_{0}}$. Applying the Lemma 5.5 to the case $T=\mathbb{P}^{d *}$, we obtain $A_{\bar{\eta}}=B_{\bar{\eta}}$ because t_{0} and $\bar{\eta}$ are isomorphic since $t_{0} \in U_{0}$. Then applying the same Lemma 5.5 we have $A_{t}=B_{t}$ for each closed point $t \in U_{0}$.

References

[1] K. Banerjee \& V. Guletskĭ̆, "Etale monodromy and rational equivalence for 1-cycles on cubic hypersurfaces in $\mathbb{P}^{5 "}$, Mat. Sb. 211 (2020), no. 2, p. 3-45.
[2] S. Bloch, " K_{2} of Artinian Q-algebras, with application to algebraic cycles", Commun. Algebra 3 (1975), p. 405-428.
[3] , "An example in the theory of algebraic cycles", in Algebraic K-theory, Lecture Notes in Mathematics, vol. 551, Springer, 1976, p. 1-29.
[4] ——, Lectures on algebraic cycles, second ed., New Mathematical Monographs, vol. 16, Cambridge University Press, 2010, xxiv+130 pages.
[5] S. Bloch, A. Kas \& D. Lieberman, "Zero cycles on surfaces with $p_{g}=0$ ", Compos. Math. 33 (1976), no. 2, p. 135-145.
[6] D. Eisenbud \& J. Harris, " 3264 \& All That Intersection Theory in Algebraic Geometry, 2013".
[7] W. Fulton, Intersection theory, Princeton University Press, 2016.
[8] W. Fulton \& J. Hansen, "A connectedness theorem for projective varieties, with applications to intersections and singularities of mappings", Ann. Math. 110 (1979), no. 1, p. 159-166.
[9] J. Harris, Algebraic geometry: a first course, vol. 133, Springer, 2013.
[10] R. Hartshorne, "Equivalence relations on algebraic cycles and subvarieties of small codimension", in Algebraic geometry, Arcata 1974, Proceedings of Symposia in Pure Mathematics, vol. 29, American Mathematical Society, 1975, p. 129-164.
[11] - , Algebraic geometry, vol. 52, Springer, 2013.
[12] S. Kleiman, Algebraic cycles and the Weil conjectures, Advanced Studies in Pure Mathematics, vol. 3, North-Holland, 1968, 359-386 pages.
[13] K. Lamotke, "The topology of complex projective varieties after S. Lefschetz", Topology 20 (1981), p. 15-51.
[14] J. Milne, "Abelian Varieties (v2.00)", 2008, available at www.jmilne.org/math/, vi+166 pages.
[15] — , "Lectures on Etale Cohomology (v2.21)", 2013, available at www.jmilne.org/math/, 202 pages.
[16] D. Mumford, "Rational equivalence of 0-cycles on surfaces", J. Math. Kyoto Univ. 9 (1969), no. 2, p. 195-204.
[17] J. Murre, "Un résultat en théorie des cycles algébriques de codimension deux", C. R. Math. Acad. Sci. Paris 296 (1983), no. 23, p. 981-984.
[18] J. Murre, J. Nagel \& C. Peters, Lectures on the theory of pure motives, University Lecture Series, vol. 61, American Mathematical Society, 2013, x+149 pages.
[19] C. Peters \& J. Steenbrink, Mixed hodge structures, vol. 52, Springer, 2008.
[20] A. A. RoĬtman, "Rational equivalence of zero-dimensional cycles", Mat. Sb., N. Ser. 89(131) (1972), p. 569-585, 671.
[21] E. Tevelev, Projective Duality and Homogeneous Spaces: Invariant Theory and Algebraic Transformation Groups, Encyclopaedia of Mathematical Sciences, vol. 133, Springer, 2005.
[22] C. Voisin, Hodge theory and complex algebraic geometry. I, Cambridge Studies in Advanced Mathematics, vol. 76, Cambridge University Press, 2002, translated from the French original by Leila Schneps, $\mathrm{x}+322$ pages.
[23] - Hodge theory and complex algebraic geometry. II, Cambridge Studies in Advanced Mathematics, vol. 77, Cambridge University Press, 2003, translated from the French by Leila Schneps, $\mathrm{x}+351$ pages.

Rina Paucar, Instituto de Matemática y Ciencias Afines (IMCA), Universidad Nacional de Ingenería (UNI), Lima, Perú • E-mail : rina.paucar@imca.edu.pe • E-mail : rpaucarr@uni.edu.pe
Claudia Schoemann, Laboratoire GAATI, Université de la Polynésie française, 98702 Faa’a, Polynésie française • E-mail : claudia.schoemann@upf.pf

[^0]: ${ }^{1}$ Since in our case k is algebraically closed, k-points of T coincide with closed points of T. So this claim is true for all closed points of U_{0}.

