Publications Mathématiques de Besançon
Algèbre et Théorie des Nombres
Avec cedram.org english version
Table des matières de ce volume | Article précédent
Kazuhiko Yamaki
Survey on the geometric Bogomolov conjecture
Publications mathématiques de Besançon (2017), p. 137-193
Article PDF
Class. Math.: 14G40, 11G50
Mots clés: Geometric Bogomolov conjecture, Bogomolov conjecture, canonical heights, canonical measures, small points

Résumé

Ce texte est un article de synthèse portant sur la conjecture de Bogomolov géométrique. Nous y expliquons nos résultats récents ainsi que les travaux qui les ont précédés. Cet article contient également une introduction à la théorie des hauteurs sur les corps de fonctions et un exposé rapide des notions de base de géométrique analytique non-archimédienne.

Bibliographie

[1] Ahmed Abbes, Hauteurs et discrétude (d’après Szpiro, L., Ullmo, E., Zhang, S.), Séminaire Bourbaki 1996/97, Astérisque 245, Société Mathématique de France, 1997, p. 141–166
[2] Vladimir G. Berkovich, Spectral theory and analytic geometry over non-archimedean fields, Mathematical Surveys and Monographs 33, American Mathematical Society, 1990
[3] Vladimir G. Berkovich, “Etale cohomology for non-archimedean analytic spaces”, Publ. Math., Inst. Hautes Étud. Sci. 78 (1993), p. 5-161
[4] Vladimir G. Berkovich, “Vanishing cycles for formal schemes”, Invent. Math. 115 (1994) no. 3, p. 539-571
[5] Vladimir G. Berkovich, “Smooth p-adic analytic spaces are locally contractible”, Invent. Math. 137 (1999) no. 1, p. 1-84
[6] Fedor Alekseivich Bogomolov, “Points of finite order on Abelian Variety”, Izv. Akad. Nauk SSSR, Ser. Mat. 44 (1980) no. 4, p. 782-804
[7] Enrico Bombieri & Walter Gubler, Heights in Diophantine geometry, New Mathematical Monographs 4, Cambridge University Press, 2006
[8] Antoine Chambert-Loir, “Mesures et équidistribution sur les espaces de Berkovich”, J. Reine Angew. Math. 595 (2006), p. 215-235
[9] Zubeyir Cinkir, “Zhang’s conjecture and the effective Bogomolov conjecture over function fields”, Invent. Math. 183 (2011) no. 3, p. 517-562
[10] X. W. C. Faber, “The geometric Bogomolov conjecture for curves of small genus”, Exp. Math. 18 (2009) no. 3, p. 347-367
[11] Walter Gubler, “Local heights of subvarieties over non-archimedean fields”, J. Reine Angew. Math. 498 (1998), p. 61-113
[12] Walter Gubler, “Local and canonical heights of subvarieties”, Ann. Sc. Norm. Super. Pisa, Cl. Sci. 2 (2003) no. 4, p. 711-760
[13] Walter Gubler, “The Bogomolov conjecture for totally degenerate abelian varieties”, Invent. Math. 169 (2007) no. 2, p. 377-400
[14] Walter Gubler, “Tropical varieties for non-archimedean analytic spaces”, Invent. Math. 169 (2007) no. 2, p. 321-376
[15] Walter Gubler, “Equidistribution over function fields”, Manuscr. Math. 127 (2008) no. 4, p. 485-510
[16] Walter Gubler, “Non-archimedean canonical measures on abelian varieties”, Compos. Math. 146 (2010) no. 3, p. 683-730
[17] A.J. de Jong, “Smoothness, semi-stability and alterations”, Publ. Math., Inst. Hautes Étud. Sci. 83 (1996), p. 51-93
[18] Shu Kawaguchi, Atsushi Moriwaki & Kazuhiko Yamaki, Introduction to Arakelov geometry, in Algebraic geometry in East Asia (Kyoto, 2001), World Scientific, 2002, p. 1-74
[19] Serge Lang, “Division points on curves”, Ann. Mat. Pura Appl. 70 (1965), p. 229-234
[20] Serge Lang, Abelian varieties, Springer, 1983
[21] Serge Lang, Fundamentals of Diophantine Geometry, Springer, 1983
[22] Laurent Moret-Bailly, Métriques permises, Séminaire sur les pinceaux arithmétiques: La Conjecture de Mordell, Astérisque 127, Société Mathématique de France, 1985, p. 29–87
[23] Atsushi Moriwaki, “Bogomolov conjecture for curves of genus $2$ over function fields”, J. Math. Kyoto Univ. 36 (1996) no. 4, p. 687-695
[24] Atsushi Moriwaki, “A sharp slope inequality for general stable fibrations of curves”, J. Reine Angew. Math. 480 (1996), p. 177-195
[25] Atsushi Moriwaki, “Bogomolov conjecture over function fields for stable curves with only irreducible fibers”, Compos. Math. 105 (1997) no. 2, p. 125-140
[26] Atsushi Moriwaki, “Relative Bogomolov’s inequality and the cone of positive divisors on the moduli space of stable curves”, J. Am. Math. Soc. 11 (1998) no. 3, p. 569-600
[27] Atsushi Moriwaki, “Arithmetic height functions over finitely generated fields”, Invent. Math. 140 (2000) no. 1, p. 101-142
[28] David Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics 5, Oxford University Press, 1970
[29] Johannes Nicaise, “Berkovich skeleta and birational geometry”, https://arxiv.org/abs/1409.5229, 2014
[30] Richard Pink & Damian Roessler, “On $\psi $-invariant subvarieties of semiabelian varieties and the Manin–Mumford conjecture”, J. Algebr. Geom. 13 (2004) no. 4, p. 771-798
[31] Michel Raynaud, “Courbes sur une variété abélienne et points de torsion”, Invent. Math. 71 (1983), p. 207-233
[32] Michel Raynaud, Sous-variétés dúne variété abélienne et points de torsion, Arithmetic and geometry, vol. I: Arithmetic, Progress in Mathematics 35, Birkhäuser, 1983, p. 327–352
[33] Thomas Scanlon, “Diophantine geometry from model theory”, Bull. Symb. Log. 7 (2001) no. 1, p. 37-57
[34] Thomas Scanlon, “A positive characteristic Manin–Mumford theorem”, Compos. Math. 141 (2005) no. 6, p. 1351-1364
[35] Lucien Szpiro, Emmanuel Ullmo & Shou-Wu Zhang, “Équirépartition des petits points”, Invent. Math. 127 (1997) no. 2, p. 337-347
[36] Emmanuel Ullmo, “Positivité et discrétion des points algébriques des courbes”, Ann. Math. 147 (1998) no. 1, p. 167-179
[37] Kazuhiko Yamaki, “Geometric Bogomolov conjecture for nowhere degenerate abelian varieties of dimension 5 with trivial trace”, to appear in Math. Res. Lett.
[38] Kazuhiko Yamaki, “Geometric Bogomolov’s conjecture for curves of genus $3$ over function fields”, J. Math. Kyoto Univ. 42 (2002) no. 1, p. 57-81
[39] Kazuhiko Yamaki, “Effective calculation of the geometric height and the Bogomolov conjecture for hyperelliptic curves over function fields”, J. Math. Kyoto Univ. 48 (2008) no. 2, p. 401-443
[40] Kazuhiko Yamaki, “Geometric Bogomolov conjecture for abelian varieties and some results for those with some degeneration (with an appendix by Walter Gubler: The minimal dimension of a canonical measure)”, Manuscr. Math. 142 (2013) no. 3-4, p. 273-306
[41] Kazuhiko Yamaki, “Strict supports of canonical measures and applications to the geometric Bogomolov conjecture”, Compos. Math. 152 (2016) no. 5, p. 997-1040 Article
[42] Kazuhiko Yamaki, “Trace of abelian varieties over function fields and the geometric Bogomolov conjecture”, J. Reine Angew. Math. (2016), https://doi.org/10.1515/crelle-2015-0086 Article
[43] Kazuhiko Yamaki, “Non-density of small points on divisors on abelian varieties and the Bogomolov conjecture”, J. Am. Math. Soc. 30 (2017) no. 4, p. 1133-1163
[44] Xinyi Yuan, “Big line bundles over arithmetic varieties”, Invent. Math. 173 (2008) no. 3, p. 603-649
[45] Shou-Wu Zhang, “Admissible pairing on a curve”, Invent. Math. 112 (1993) no. 1, p. 171-193
[46] Shou-Wu Zhang, “Small points and adelic metrics”, J. Algebr. Geom. 4 (1995) no. 2, p. 281-300
[47] Shou-Wu Zhang, “Equidistribution of small points on abelian varieties”, Ann. Math. 147 (1998) no. 1, p. 159-165
[48] Shou-Wu Zhang, “Gross-Schoen cycles and dualising sheaves”, Invent. Math. 179 (2010) no. 1, p. 1-73

UFC LMB PUFC