Publications Mathématiques de Besançon
Algèbre et Théorie des Nombres
With cedram.org version française
Table of contents for this volume | Previous article | Next article
David P. Roberts
A three-parameter clan of Hurwitz–Belyi maps
(Une famille d’applications d’Hurwitz–Belyi à trois paramètres)
Publications mathématiques de Besançon (2018), p. 69-83, doi: 10.5802/pmb.22
Article PDF
Class. Math.: 14H57, 33E99
Keywords: Belyi map, discriminant, monodromy

Abstract

We study a collection of Hurwitz–Belyi maps depending on three integer parameters, finding formulas uniform in the parameters.

Bibliography

[1] Jean-Marc Couveignes, “Quelques revêtements définis sur $\mathbb{Q}$”, Manuscr. Math. 92 (1997) no. 4, p. 409-445 Article
[2] Robert Guralnick & Kay Magaard, “On the minimal degree of a primitive permutation group”, J. Algebra 207 (1998) no. 1, p. 127-145 Article
[3] Gunter Malle & David P. Roberts, “Number fields with discriminant $\pm 2^a3^b$ and Galois group $A_n$ or $S_n$”, LMS J. Comput. Math. 8 (2005), p. 80-101 (electronic) Article
[4] Fedor Pakovich & Alexander K. Zvonkin, “Minimum degree of the difference of two polynomials over $\mathbb{Q}$, and weighted plane trees”, Selecta Math. (N.S.) 20 (2014) no. 4, p. 1003-1065 Article
[5] Fedor Pakovich & Alexander K. Zvonkin, “Minimum degree of the difference of two polynomials over $\mathbb{Q}$, Part II: Davenport-Zannier pairs”, https://arxiv.org/abs/1509.07973, 2015
[6] David P. Roberts, “Hurwitz-Belyi maps”, Publ. Math. Besançon, Algèbre Théorie Nombres 6 (2018), p. 25-67

UFC LMB PUFC