Publications Mathématiques de Besançon
Algèbre et Théorie des Nombres
With cedram.org version française
Table of contents for this volume | Previous article | Next article
Florent Ulpat Rovetta
A strategy and a new operator to generate covariants in small characteristic
(Une stratégie et un nouvel opérateur pour générer des covariants en petite caractéristique)
Publications mathématiques de Besançon (2018), p. 85-99
Article PDF
Class. Math.: 13A50, 14H45
Keywords: Positive and small characteristic, syzygies, generating system of covariants, separating system of covariants.

Abstract

We present some new results about covariants in small characteristic. In Section 1, we give a method to construct covariants using an approach similar to Sturmfels. We apply our method to find a separating system of covariants for binary quartics in characteristic $3$. In Section 2, we construct a new operator on covariants when the characteristic is small compared to the degree of the form.

Bibliography

[1] Romain Basson, Arithmétique des espaces de modules des courbes hyperelliptiques de genre 3 en caractéristique positive, Ph. D. Thesis, Université de Rennes 1 (France), 2015
[2] Corrado de Concini & Claudio Procesi, “A characteristic free approach to invariant theory”, Adv. Math. 21 (1976) no. 3, p. 330-354
[3] Harm Derksen & Gregor Kemper, Computational invariant theory, Encyclopaedia of Mathematical Sciences 130, Springer, 2002
[4] Wulf-Dieter Geyer, Invarianten binärer Formen, Classification of algebraic varieties and compact complex manifolds, Lecture Notes in Math. 412, Springer, 1974, p. 36–69
[5] David Hilbert, Theory of algebraic invariants, Cambridge University Press, 1993, Translated from the German and with a preface by Reinhard C. Laubenbacher, Edited and with an introduction by Bernd Sturmfels
[6] Benjamin Howard, John Millson, Andrew Snowden & Ravi Vakil, “The equations for the moduli space of $n$ points on the line”, Duke Math. J. 146 (2009) no. 2, p. 175-226 Article
[7] Joseph P. S. Kung & Gian-Carlo Rota, “The invariant theory of binary forms”, Bull. Am. Math. Soc. 10 (1984) no. 1, p. 27-85 Article
[8] Reynald Lercier & Christophe Ritzenthaler, “Hyperelliptic curves and their invariants: geometric, arithmetic and algorithmic aspects”, J. Algebra 372 (2012), p. 595-636 Article
[9] Bernd Sturmfels, Algorithms in invariant theory, Texts and Monographs in Symbolic Computation, Springer, 2008
[10] Florent Ulpat Rovetta, Étude algorithmique et arithmétique de courbes de petit genre, Ph. D. Thesis, Aix Marseille Université (France), 2015
[11] Hermann Weyl, The Classical Groups. Their Invariants and Representations, Princeton University Press, 1939

UFC LMB PUFC