The asymptotics of the probability that the self-intersection local time of a random walk on exceeds its expectation by a large amount is a fascinating subject because of its relation to some models from Statistical Mechanics, to large-deviation theory and variational analysis and because of the variety of the effects that can be observed. However, the proof of the upper bound is notoriously difficult and requires various sophisticated techniques. We survey some heuristics and some recently elaborated techniques and results. This is an extended summary of a talk held on the CIRM-conference on Excess self-intersection local times, and related topics in Luminy, 6-10 Dec., 2010.
@article{ACIRM_2010__2_1_15_0, author = {Wolfgang K\"onig}, title = {Upper tails of self-intersection local times of random walks: survey of proof techniques}, journal = {Actes des rencontres du CIRM}, pages = {15--24}, publisher = {CIRM}, volume = {2}, number = {1}, year = {2010}, doi = {10.5802/acirm.18}, zbl = {06938566}, language = {en}, url = {https://pmb.cedram.org/articles/10.5802/acirm.18/} }
TY - JOUR AU - Wolfgang König TI - Upper tails of self-intersection local times of random walks: survey of proof techniques JO - Actes des rencontres du CIRM PY - 2010 SP - 15 EP - 24 VL - 2 IS - 1 PB - CIRM UR - https://pmb.cedram.org/articles/10.5802/acirm.18/ DO - 10.5802/acirm.18 LA - en ID - ACIRM_2010__2_1_15_0 ER -
Wolfgang König. Upper tails of self-intersection local times of random walks: survey of proof techniques. Actes des rencontres du CIRM, Volume 2 (2010) no. 1, pp. 15-24. doi : 10.5802/acirm.18. https://pmb.cedram.org/articles/10.5802/acirm.18/
[A08] A. Asselah, Large deviations estimates for self-intersection local times for simple random walk in , Probab. Theory Relat. Fields 141, 19-45 (2008). | DOI | MR | Zbl
[A09] A. Asselah, Large deviation principle for self-intersection local times for random walk in with , ALEA Lat. Am. J. Probab. Math. Stat. 6, 281-322 (2009). | Zbl
[A10] A. Asselah, Shape transition under excess self-intersections for transient random walk, Ann. Inst. Henri Poincaré Probab. Stat. 46:1, 250-278 (2010). | DOI | MR | Zbl
[AC07] A. Asselah and F. Castell, Random walk in random scenery and self-intersection local times in dimensions . Probab. Theory Relat. Fields 138, 1-32 (2007). | DOI | MR | Zbl
[BHK07] D. Brydges, R. van der Hofstad and W. König, Joint density for the local times of continuous-time Markov chains, Ann. Probab. 35:4, 1307-1332 (2007). | DOI | MR | Zbl
[BK11+] M. Becker and W. König, Self-intersection local times of random walks: exponential moments in supercritical dimensions, in preparation. | DOI | MR | Zbl
[BK09] M. Becker and W. König, Moments and distribution of the local times of a transient random walk on , Jour. Theor. Prob. 22:2, 365 - 374 (2009). | DOI | MR | Zbl
[BK10] M. Becker and W. König, Self-intersection local times of random walks: exponential moments in subcritical dimensions, preprint (2010). | DOI | MR | Zbl
[Ca10] F. Castell, Large deviations for intersection local time in critical dimension, Ann. Probab. 38:2, 927-953 (2010). | DOI | MR | Zbl
[Ce07] J. Cerny, Moments and distribution of the local times of a two-dimensional random walk, Stoch. Proc. Appl. 117, 262-270 (2007). | DOI | MR | Zbl
[Ch09] X. Chen, Random Walk Intersections: Large Deviations and Related Topics. Mathematical Surveys and Monographs, AMS. (2010) Vol. 157, Providence, RI.
[CM09] X. Chen and P. Mörters, Upper tails for intersection local times of random walks in supercritical dimensions. J. London Math. Soc. 79, 186-210 (2009). | DOI | MR | Zbl
[D88] E.B. Dynkin, Self-intersection gauge for random walks and for Brownian motion, Ann. Probab. 16, 1-57 (1988). | DOI | MR | Zbl
[dA85] A. de Acosta, Upper bounds for large deviations of dependent random vectors, Z. Wahrsch. Verw. Gebiete 69, 551-565 (1985). | DOI | MR | Zbl
[DV79] M. Donsker and S.R.S. Varadhan, On the number of distinct sites visited by a random walk, Comm. Pure Appl. Math. 32, 721–747 (1979). | DOI | MR | Zbl
[DZ98] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, 2 Edition. Springer, New York (1998). | Zbl
[GKS07] N. Gantert, W. König and Z. Shi, Annealed deviations for random walk in random scenery, Ann. Inst. Henri Poincaré (B) Prob. Stat. 43:1, 47-76 (2007). | DOI | MR | Zbl
[HKM06] R. van der Hofstad, W. König and P. Mörters, The universality classes in the parabolic Anderson model, Commun. Math. Phys. 267:2, 307-353 (2006). | DOI | MR | Zbl
[KM02] W. König and P. Mörters, Brownian intersection local times: upper tail asymptotics and thick points, Ann. Probab. 30, 1605–1656 (2002). | DOI | MR | Zbl
[L10a] C. Laurent, Large deviations for self-intersection local times of stable random walks, arXiv: 1003.6060, preprint (2010). | DOI | MR | Zbl
[L10b] C. Laurent, Large deviations for self-intersection local times in subcritical dimensions, arXiv: 1011.6486, preprint (2010). | DOI | MR | Zbl
[Le86] J.-F. Le Gall, Propriétés d’intersection des marches aléatoires, I. Convergence vers le temps local d’intersection, Com. Math. Phys. 104, 471-507 (1986). | DOI | Zbl
Cited by Sources: