A number field , with ring of integers , is said to be a Pólya field if the -algebra formed by the integer-valued polynomials on admits a regular basis. In a first part, we focus on fields with degree less than six which are Pólya fields. It is known that a field is a Pólya field if certain characteristic ideals are principal. Analogously to the classical embedding problem, we consider the embedding of in a Pólya field. We give a positive answer to this embedding problem by showing that the Hilbert class field of is a Pólya field. Finally, we give upper bounds for the minimal degree of a Pólya field containing , namely the Pólya number of .
@article{ACIRM_2010__2_2_21_0, author = {Amandine Leriche}, title = {P\'olya fields and {P\'olya} numbers}, journal = {Actes des rencontres du CIRM}, pages = {21--26}, publisher = {CIRM}, volume = {2}, number = {2}, year = {2010}, doi = {10.5802/acirm.29}, zbl = {06938577}, language = {en}, url = {https://pmb.cedram.org/articles/10.5802/acirm.29/} }
Amandine Leriche. Pólya fields and Pólya numbers. Actes des rencontres du CIRM, Volume 2 (2010) no. 2, pp. 21-26. doi : 10.5802/acirm.29. https://pmb.cedram.org/articles/10.5802/acirm.29/
[1] P.J. Cahen, J.L. Chabert, Integer-valued polynomials, Mathematical Surveys and Monographs, vol 48, Amer. Math. Soc., Providence (1997). | Zbl
[2] J.L Chabert, Factorial Groups and Pólya groups in Galoisian Extension of , Proceedings of the fourth international conference on commutative ring theory and applications (2002), 77-86.
[3] H. Cohen, A Course in Computational Algebraic Number Theory, Springer, 2000.
[4] H. Furuya, Principal ideal theorem in the genus field for absolutely abelian extensions, J. Number Theory 9 (1977), 4-15. | DOI | MR | Zbl
[5] G. Gras, Class Field Theory, Springer, 2005. | DOI | MR | Zbl
[6] K. Hardy, R.H. Hudson, D. Richman, K.S. Williams and N.M. Holtz, Calculation of Class Numbers of Imaginary Cyclic Quartic Fields, Carleton-Ottawa Mathematical Lecture Note Series 7 (1986), 201 pp. | Zbl
[7] D. Hilbert, Die Theorie der algebraischen Zahlkörper, Jahresbericht der Deutschen Mathematiker-Vereinigung 4 (1894-95), 175-546. | Zbl
[8] E.S. Golod, I.R. Shafarevich, On the class field tower, Izv. Akad. Nauk 28 (1964), 261-272. | Zbl
[9] A. Leriche, Groupes, Corps et Extensions de Pólya : une question de capitulation, PhD thesis, Université de Picardie Jules Verne (Décembre 2010).
[10] A. Leriche, Pólya fields, Pólya groups and Pólya extensions: a question of capitulation, Journal de Théorie des Nombres de Bordeaux, 23, (2011), 235-249. | DOI | Zbl
[11] A. Ostrowski, Über ganzwertige Polynome in algebraischen Zahlkörpren, J. Reine Angew. Math. 149 (1919), 117-124. | DOI | Zbl
[12] G. Pólya, Über ganzwertige Polynome in algebraischen Zahlkörpern, J. Reine Angew. Math. 149 (1919), 97-116. | DOI | Zbl
[13] K.S. Williams, Integers of biquadratic fields, Canad. Math. Bull. 13 (1970), 519-526. | DOI | MR | Zbl
[14] H. Zantema, Integer valued polynomials over a number field, Manusc. Math. 40 (1982), 155-203. | DOI | MR | Zbl
Cited by Sources: