In this paper, we prove a remarkable property of the coefficients of Nörlund’s polynomials obtained mainly from a result of J.-L. Chabert.
@article{ACIRM_2010__2_2_71_0, author = {Farid Bencherif}, title = {Sur une propri\'et\'e des polyn\^omes de {N\"orlund}}, journal = {Actes des rencontres du CIRM}, pages = {71--77}, publisher = {CIRM}, volume = {2}, number = {2}, year = {2010}, doi = {10.5802/acirm.36}, zbl = {06938584}, language = {fr}, url = {https://pmb.cedram.org/articles/10.5802/acirm.36/} }
Farid Bencherif. Sur une propriété des polynômes de Nörlund. Actes des rencontres du CIRM, Volume 2 (2010) no. 2, pp. 71-77. doi : 10.5802/acirm.36. https://pmb.cedram.org/articles/10.5802/acirm.36/
[1] A. Adelberg, Arithmetic properties of the Nörlund polynomial Discrete Mathematics, (H. W. Gould volume) 204 (1999), 5-13. | DOI | Zbl
[2] F. Bencherif et T. Garici, Sur une propriété des polynômes de Stirling, Preprint (soumis).
[3] F. Bencherif et A. Zekiri, On some properties of Nörlund’s polynomials, Preprint.
[4] L. Carlitz, Note on the Nörlund polynomial , Proc. Amer. Math. Soc. 11 (1960), 452-455. | DOI | Zbl
[5] L. Carlitz, Some properties of the Norlund polynomial Math. Nachr. 33 (1967), 297-311. | DOI | Zbl
[6] J.-L. Chabert, Integer-valued polynomials on prime numbers and logarithm power expansion, European Journal of Combinatorics 28 (2007), 754-761. | DOI | MR | Zbl
[7] J.-L. Chabert and P.-J. Cahen, Old Problems and New Questions around Integer-Valued Polynomials and Factorial Sequences, in Multiplicative Ideal Theory in Commutative Algebra, Springer, 2006, 89-108. | DOI | Zbl
[8] L. Comtet Analyse Combinatoire, Presses Universitaires de France, Paris, Vol. 1 & 2, 1970. | DOI
[9] I. M. Gessel, On Miki’s identity for Bernoulli numbers, J. Number Theory 110 (2005),75-82. | DOI | MR | Zbl
[10] H. W. Gould, The Lagrange interpolation formula and Stirling numbers, Proc. Amer. Math. Soc. 11 (1960), 421-425. | DOI | MR | Zbl
[11] R.L. Graham, D.E. Knuth, and O. Patashnick, Concrete Mathematics : a Foundation for Computer Science, Addison-Wesley, 1994. | Zbl
[12] R.M. Guralnick and M. Lorentz, Orders of Finite Groups of Matrices, arXiv :math/0511191v1 [math.GR] v1] 8 Nov 2005. | DOI
[13] G.-D. Liu and H. M. Srivastava, Explicit Formulas for the Nörlund Polynomials and , Computers & Mathematics with Applications Vol. 51, n9-10, (2006), 1377-1384. | DOI | Zbl
[14] D.S. Mitrinović et R.S. Mitrinović, Tableaux qui fournissent des polynômes de Stirling, Publications de la Faculté d’Electronique, série : Mathématiques et physique, N34, (1960) 1-23. | Zbl
[15] D.S. Mitrinović, Sur une relation de récurrence relative aux nombres de Bernoulli d’ordre supérieur, C. R. Acad. Sc. Paris 250 (1960), 4266-4267. | Zbl
[16] N.E. Nörlund, Vorlesungen über Differenzenrechnung, Springer, Berlin, 1924 ; repr. Chelsea Publ. Comp., New York, 1954. | DOI | Zbl
[17] N.J.A. Sloane, The On-Line Encylopedia of Integer Sequences, http ://www.research.att.com/~njas/sequences/ index.htm. | DOI
Cited by Sources: